九、Ai学习笔记|VGG

卷积层

VGG的每一个卷积层使用的都是 3x3的卷积层,步长都是1,而且都是 same层(即卷积后,通过padding,使得矩阵的大小不变)

池化层

每一个池化层步长都是2,并且大小为 2x2

 [CONV 64]x2 便是两个卷积层,每个卷积层 64 个过滤器

AlexNet 被用来识别 1000分类

因为有 16 个带参数的神经网络,13个卷积层,3个全连接层,池化层不被计算在内,所欲被叫做 VGG16

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值