十三、AI学习笔记|物体探测(二)

本文详细介绍了物体检测中的关键算法,包括YOLO(You Only Look Once)探测法,通过3x3网格进行高效物体定位;IOU(Intersection Over Union)用于判断定位准确性,当IOU>0.5时认为预测成功;非极大抑制技术解决重复探测问题,仅保留最高概率的预测框;以及Anchor Box解决同一格子内存在多个物体的状况,通过增加元素数量适应不同大小物体的检测。
摘要由CSDN通过智能技术生成

1、YOLO探测法

滑动窗口弹测法:计算量大。

卷积化的滑动窗口:不够精准,原因:一个物体可能同时存在于多个滑动窗口中。

YOLO探测法

设100x100的图像如下,划分成3x3的9个小格子

在制作数据集时,需要对每个小格子制作对应的y标签,设y标签如下(假设只考虑一个格子中只有一个物体):

每个小格子对应8个元素,则上图最终形成的标签维度为3x3x8

注意:

  • 在对每个格子打标签时,y标签内的坐标按照以下标准:格子左上角为原点(0,0),右下角为(1,1)点。

  • 物体的宽度和高度可以大于1

  • 格子越小,物体出现在同一个格子中的概率越小。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值