Sklearn
机器学习
嘻哈吼嘿呵
这个作者很懒,什么都没留下…
展开
-
三、Sklearn 特征选择
目录一、概述二、Filter1. 移除低方差的特征 (Removing features with low variance)2、单变量特征选择 (Univariate feature selection)(1)、卡方(Chi2)检验(2)Pearson相关系数 (Pearson Correlation)3 、互信息和最大信息系数 (MIC)4 、距离相关系数 (D...原创 2019-10-02 01:18:22 · 4448 阅读 · 0 评论 -
二、Sklearn数据预处理
目录一、sklearn中的数据预处理和特征工程二、数据预处理 Preprocessing & Impute1、数据无量纲化(1)preprocessing.MinMaxScaler 数据归一化(2)preprocessing.StandardScaler 数据标准化(3)归一化和标准化对NaN的处理(4)StandardScaler和MinMaxScal...原创 2019-10-01 02:27:37 · 1030 阅读 · 0 评论 -
一、Sklearn库的学习
一、sklearn官方文档的类容和结构1,机器学习的认识从实践的角度出发,机器学学习要做的工作就是在我们有的一个数据集上建立一个或者多个模型,然后对我们的模型进行优化和评估。我们将会在sklearn中看到下图各个模块到底是什么,怎么用。2,sklearn库的结构(1)结构:由图中,可以看到库的算法主要有四类:分类,回归,聚类,降维。其中: 常用的回归:线性、决策树...转载 2019-09-29 23:50:43 · 494 阅读 · 0 评论 -
四、Sklearn降维算法 PCA 和 SVD
sklearn中降维算法都被包括在模块decomposition中,这个模块本质是一个矩阵分解模块。在过去的十年中,如果要讨论算法进步的先锋,矩阵分解可以说是独树一帜。矩阵分解可以用在降维,深度学习,聚类分析,数据预处理,低纬度特征学习,推荐系统,大数据分析等领域。降维算法中的”降维“,指的是降低特征矩阵中特征的数量。上周的课中我们说过,降维的目的是为了让算法运算更快,效果更好,但其...原创 2019-10-03 15:19:12 · 2414 阅读 · 0 评论
分享