嘻哈吼嘿呵
码龄9年
关注
提问 私信
  • 博客:250,080
    250,080
    总访问量
  • 181
    原创
  • 1,423,666
    排名
  • 65
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
  • 加入CSDN时间: 2015-09-04
博客简介:

嘻哈吼嘿呵的博客

查看详细资料
个人成就
  • 获得91次点赞
  • 内容获得23次评论
  • 获得610次收藏
  • 代码片获得669次分享
创作历程
  • 10篇
    2021年
  • 16篇
    2020年
  • 259篇
    2019年
成就勋章
TA的专栏
  • 卷积神经网络
    5篇
  • 深度学习
    20篇
  • OpenCV图像处理
    12篇
  • Skimage数字图像处理
    13篇
  • Pytorch
    8篇
  • Keras
  • Tesorflow
  • 大数据 ##################
  • 大数据
    2篇
  • 数据仓库
    11篇
  • Scala
    12篇
  • Shell
    6篇
  • Spark
    21篇
  • Spark SQL
    4篇
  • Spark Streaming
    8篇
  • Structured Streaming
    9篇
  • Flink
    25篇
  • Hadoop
    9篇
  • Hive
    2篇
  • Kafka
    6篇
  • Flume
    2篇
  • Sqoop
    3篇
  • Azkaban
    6篇
  • Zookeeper
  • Hbase
    4篇
  • Mysql
    1篇
  • Mongodb
  • Redis
    1篇
  • Docker
    9篇
  • Kubernetes(k8s)
  • Java ###################
  • Netty
    5篇
  • Akka
  • Java
    7篇
  • 多线程
    3篇
  • 设计模式
    3篇
  • SpringBoot
    9篇
  • SpringCloud
  • Mybatis
  • VMware
  • Centos
    2篇
  • ubuntu
    1篇
  • Python ##################
  • 机器学习
    6篇
  • Python
    11篇
  • Python爬虫
    7篇
  • Sklearn
    4篇
  • Matplotlib
    12篇
  • Flask
  • Pandas
    7篇
  • Numpy
    6篇
兴趣领域 设置
  • 大数据
    hadoophivestormsparketl
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

命名标准管理

概述数据建模的过程中,会对几百个甚至上千个字段进行命名,特别在一个团队中,经常会遇到这些问题:这时候就需要建立一个标准的、统一的命名平台,每个人不仅可以维护自己的标准命名,还可以和同事之间,企业之间共享标准命名。下面是命名标准管理系统的网址,欢迎注册使用。知了命名:www.zlmingming.cn功能介绍首页在首页可以根据关键字查询标准命名,如果在自己的库里查不到,会查询到翻译后的值。还可以看到本公司其他库里标准命名...
转载
发布博客 2021.03.25 ·
322 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

数仓可视化,低代码开发平台

概述在数据仓库建设中,特别是在多个开发人员的过程中,经常会遇到以下问题:需要把数仓整个生命周期进行统一管理,基于元数据驱动的自动化、可视化的平台,实现低代码开发。功能模块开发平台主要包括以下模块:需求管理,源系统管理,数据探查,业务总线矩阵,维度建模,ETL管理,作业管理,BI应用管理,数据标准管理,元数据管理。需求管理:统一管理各部门的需求文档,定义需求文档标准格式,管理需...
转载
发布博客 2021.03.25 ·
535 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

数据仓库(七)之作业调度篇

概述随着数据仓库的开发,ETL作业会越来越多,怎么把这些作业有序的运行起来,就需要一个健壮的调度系统来保证数据能够准确、及时的提供给BI应用程序。调度系统设计目标调度系统架构ETL作业数据仓库的ETL作业可能不至一种,需要把各种作业再次进行封装,建立作业的标准格式,统一作业的输入参数、输出参数和参数格式,达到所有的作业调度方式一致。作业管理提供便捷的...
转载
发布博客 2021.03.25 ·
653 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

2021-03-25

概述数据质量的高低代表了该数据满足数据消费者期望的程度,这种程度基于他们对数据的使用预期。数据质量必须是可测量的,把测量的结果转化为可以理解的和可重复的数字,使我们能够在不同对象之间和跨越不同时间进行比较。数据质量管理是通过计划、实施和控制活动,运用质量管理技术度量、评估、改进和保证数据的恰当使用。数据质量维度数据质量产生的根本原因...
转载
发布博客 2021.03.25 ·
152 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

数据仓库(五)元数据管理

概述元数据通常定义为”关于数据的数据”,在数据仓库中是定义和描述DW/BI系统的结构,操作和内容的所有信息。元数据贯穿了数据仓库的整个生命周期,使用元数据驱动数据仓库的开发,使数据仓库自动化,可视化。元数据类型1.业务元数据业务元数据指从业务角度描述业务领域相关的概念、关系和规则的数据,包括业务术语和业务规则等信息。2.技术元数据技术元数据指描述系统中技术细节相关的概念、...
转载
发布博客 2021.03.25 ·
256 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

数据仓库(四)之ETL开发

概述ETL是数据仓库的后台,主要包含抽取、清洗、规范化、提交四个步骤,传统数据仓库一般分为四层模型。分层的作用STG层在维度建模阶段已经确定了源系统,而且对源系统进行了数据评估。STG层是根据CDC策略把各个源系统的数据抽取到数据仓库中。STG层主要是面向批处理的形式,如果是根据日志信息实时同步...
转载
发布博客 2021.03.25 ·
789 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

数据仓库(三)之架构篇

概述架构是数据仓库建设的总体规划,从整体视角描述了解决方案的高层模型,描述了各个子系统的功能以及关系,描述了数据从源系统到决策系统的数据流程。业务需求回答了要做什么,架构就是回答怎么做的问题。架构的价值数据仓库架构数据仓库的核心功能从源系统抽取数据,通过清洗、转换、标准化,将数据加载到BI平台,进而满足业务用户的数据分析和决策支持。数据仓库架构包含三个部分:数据架构、应用程序架构、底层设...
转载
发布博客 2021.03.25 ·
200 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

数据仓库(二)之维度建模篇

概述维度建模是一种将数据结构化的逻辑设计方法,它将客观世界划分为度量和上下文。度量是常常是以数值形式出现,事实周围有上下文包围着,这种上下文被直观地分成独立的逻辑块,称之为维度。它与实体-关系建模有很大的区别,实体-关系建模是面向应用,遵循第三范式,以消除数据冗余为目标的设计技术。维度建模是面向分析,为了提高查询性能可以增加数据冗余,反规范化的设计技术。维度建模优点事实表事实表...
转载
发布博客 2021.03.25 ·
305 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

数据仓库(一)之需求篇

概述业务需求定义了企业的业务人员为了完成其工作,进而实现企业目标,一定要具备的东西。包括功能性需求和提供的服务。它是数据仓库的核心,从广度和深度上做好需求调研为数据仓库建设建立良好的开端。需求分类需求调研步骤1.确定调研对象由于业务人员不懂技术,它们以为需求都会得到满足。各个项目开发人员不懂业务,不熟悉整个业务场景。数据仓库团...
转载
发布博客 2021.03.25 ·
316 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

scala实现各种排序算法

1、冒泡排序object BubblingSort { /** * 比较相邻元素的大小,对于每次循环,按排序的规则把最值移向数组的一端,同时循环次数依次减少 * @param args */ def main(args: Array[String]): Unit = {// val testData = new ArrayBuffer[Int]// testData += 10;testData += 101;testData += 75;testDat
原创
发布博客 2021.03.15 ·
628 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

一、十大海量数据处理方法总结

一、布隆过滤器(BloomFilter)如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定。链表、树、散列表(又叫哈希表,Hash table)等等数据结构都是这种思路,存储位置要么是磁盘,要么是内存。很多时候要么是以时间换空间,要么是以空间换时间。在响应时间要求比较严格的情况下,如果我们存在内里,那么随着集合中元素的增加,我们需要的存储空间越来越...
转载
发布博客 2020.06.30 ·
1508 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

十四、AI学习笔记|人脸识别

1、人脸识别概述 人脸验证:给定一个人脸和它对应的ID,让系统来判断这个人是否就是这个ID对应的人。如手机的人脸解锁功能、火车站的进站闸口。 人脸识别:就是随便给定一个人,然后给出这个人的相关信息。 活体检测:防止别人用你的一张照片来欺骗摄像头,检测摄像头前的是否是活人。 2、差异性验证公司内部的人脸打卡系统和人脸门禁系统如何实现?(1)第一种方案使用公司员工相片作为数据集,训练一个CNN神经网络,当输入相片到CNN时,输出对应数据库中的哪一个人。缺点 公
原创
发布博客 2020.06.14 ·
302 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

十三、AI学习笔记|物体探测(二)

1、YOLO探测法滑动窗口弹测法:计算量大。卷积化的滑动窗口:不够精准,原因:一个物体可能同时存在于多个滑动窗口中。YOLO探测法设100x100的图像如下,划分成3x3的9个小格子在制作数据集时,需要对每个小格子制作对应的y标签,设y标签如下(假设只考虑一个格子中只有一个物体):每个小格子对应8个元素,则上图最终形成的标签维度为3x3x8注意: 在对每个格子打标签时,y标签内的坐标按照以下标准:格子左上角为原点(0,0),右下角为(1,1)点。 物体的宽
原创
发布博客 2020.06.13 ·
268 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

十二、AI学习笔记|物体探测(一)

test
原创
发布博客 2020.06.13 ·
304 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

十一、AI学习笔记|Inception网络

1、 1x1卷积也称为网中网如下,输入一个 6x6 的 矩阵,过滤器是 1x1 的,则相当于每个元素简单的乘以了 2。作用池化层可以改变矩阵的大小,1x1 卷积则可以改变矩阵的深度。有些人虽然使用了 1x1 卷积核,但是却不改变输出矩阵的深度,他们的目的不是为了减少计算量,而是为了增加网络的复杂度,因为增加了一层 1x1 卷积,就相当于多了一层激活函数。2、Inception网络在设计卷积层的时候,经常会犯选择困难症,到底是用 1x1 的卷积核?还是用 3x3 的卷积核.
原创
发布博客 2020.06.07 ·
239 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

十、AI学习笔记|残差网络ResNet

1、残差网络由于梯度爆炸和梯度消失的问题,导致越深的神经网络越难训练好,所以即使有足够的计算力和数据,也难以得到很深很深的优秀神经网络。残差网络:使用跳跃连接,用它来讲前面的激活值跳过中间的网络层,而直接传递到更后面的网络层去,由此来避免梯度爆炸和梯度消失。使用此种跳跃连接构建出来的网络,称之为残差网络。残差网络由一个个的残差块组成的。(1)残差块:如下两个神经网络层如果发生梯度爆炸(梯度消失),激活值会越来越大(越来越小),为了解决这种问题,可以将的公式变成,将跳到了后面的
原创
发布博客 2020.06.07 ·
548 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

九、Ai学习笔记|VGG

卷积层VGG的每一个卷积层使用的都是 3x3的卷积层,步长都是1,而且都是 same层(即卷积后,通过padding,使得矩阵的大小不变)池化层每一个池化层步长都是2,并且大小为 2x2[CONV 64]x2 便是两个卷积层,每个卷积层 64 个过滤器AlexNet 被用来识别 1000分类因为有 16 个带参数的神经网络,13个卷积层,3个全连接层,池化层不被计算在内,所欲被叫做 VGG16...
原创
发布博客 2020.06.06 ·
654 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

八、AI学习笔记|AlexNet

网络的输入数据是彩色图像AlexNet使用的是relu函数
原创
发布博客 2020.06.06 ·
189 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

七、AI学习笔记|LeNet-5

起初被用于10分类识别
原创
发布博客 2020.06.06 ·
170 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

六、AI学习笔记|智能视觉|卷积神经网络

目录1、智能视觉2、卷积运算3、边缘检测4、Padding5、卷积运算后的矩阵大小6、3D卷积7、池化层8、卷积的好处1、智能视觉图像识别目标检测风格转换:输入一张图片,输出不同风格的版本问题:神经网络的输入特征会比较大,可能会出现过拟合、对计算力的要求较高2、卷积运算假设有一张6x6x1的图片有一个卷积核(也可以叫过滤器):过滤器的维度一般都是奇数的:如 1x1、 3x3、 5x5、 7x7用*代表卷积运算,结果将得到一个 .
原创
发布博客 2020.06.06 ·
322 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多