供应商发展投资的博弈论分析

供应商发展投资策略:一项博弈论评估

摘要

供应商发展是组织及其供应链的一项关键竞争举措。近年来,对该领域的研究 日益增多,但仍需进一步深入理解供应商发展。具体而言,近期的供应商开发投资 实践已从组织或供应商的独立行动转向组织与供应商之间的联合行动。面对这一现 象,本文旨在基于柯布‐道格拉斯生产函数构建一个理论模型。本研究重点在于确定 最优供应商开发投资策略,以通过提升供应商生产能力,使核心企业及其供应商共 同受益。供应商开发投资策略主要指组织与多个供应商之间通过资本资源(有形) 投资、知识(无形)投资以及分担资本资源(有形)投资成本所开展的联合行动。
通过运用多种博弈论模型,我们揭示了不同买卖双方关系和投资规模报酬因素如何 影响供应商开发投资策略及各方的利润。同时,本文也探讨了核心企业(买方)是 否有激励措施去分担资本资源(有形)投资成本。我们的第一个发现是,供应商开 发投资活动动机在“规模报酬递增”情况下源于供应量的增加,而在“规模报酬递 减”情况下则源于组织和供应商边际利润的提升。其次,合作关系对供应链更具经 济效益,但相较于非合作关系,也需要更多的资本资源和知识支出(投资)。第三, 通过数值分析发现,合作关系无法实现帕累托效率。当使用纳什议价模型时,对供应链所有成员而言都是如此。此外,还通过参数分析 提供了更多的博弈洞察和启示。同时也提出了进一步研究的机会。
关键词 供应商发展 ·合作 ·博弈论 ·谈判 ·供应链 ·投资

1 引言

战略供应链管理策略研究支持核心企业(买方)与其供应商之间的协作与合作实践 (希特 2011;克劳斯等 1998)。战略供应链管理的一个关键方面是供应商发展( Humphreys 等,2011)。供应商发展旨在提升供应商的绩效和/或能力,并满足核 心企业的供应需求(戈文丹等人2010; 白与萨基斯 2010b)。简而言之,买方作为 核心企业,若希望通过供应商发展获取竞争优势,则更有可能采取协作方式。随着 全球化、外包以及核心能力管理理念的发展,供应商合作与持续改进在组织及供应 链的战略优势和竞争优势中发挥着越来越重要的作用(白与萨基斯 2014)。
此类供应商发展与协作的经典案例体现在丰田与通用汽车(GM)的合作中。丰田供 应商支持中心提供现场协助,帮助供应商实施丰田生产系统(TPS),并通过联合问题 解决方式修复生产问题(Talluri 等,2010;野冈等 2002)。通用汽车对一级金属车身 供应商费舍尔进行投资,以提高其产能并扩建现有工厂,这需要非常巨大的投资(戴维 斯和莱德 2014; 科斯 2006)。
核心企业可以在供应商发展方面进行多种投资,以竞争性地使供应商的供应能 力对其有利。供应商开发投资实践可能涉及多个维度,从交易信息共享到让供应商 参与董事会决策。供应商开发投资实践的广度和重点已有充分记载(白与萨基斯 2010b,2011)。供应商开发实践投资的分类可包括有形投资(如资本资源和设备) 以及无形资源投资(如知识与专长共享)(白和萨基斯 2011)。利用这两种供应商 开发投资维度,组织可根据供应商绩效的局限性调整其对供应商发展的投资数量。
然而,仅通过组织投资而缺乏供应商进一步参与和协作,很难成功实施供应商发展。
这是因为更大的投资对组织而言可能成本高昂甚至具有风险,但其回报可能对组织 及其供应链伙伴都非常可观。供应商发展带来的节约效益也可能被共享,这在目标 成本法以及服务化相关努力中已有体现(埃勒姆 2000;赖斯金等 1999)。联合行动 是供应商发展的最关键因素之一(李等人2007;比尔等 2006)。因此,我们明确将 核心企业与供应商之间的供应商开发投资合作关系定义为:组织与供应商共同实施 投资,且组织分担供应商在供应商开发项目中的部分投资成本。
供应商开发投资合作的目标是从供应商开发投资中获得财务和战略利益,例如 知识和资本资源,这些利益反过来可能产生未来财务收益。然而,供应商发展会给 核心企业和供应商双方带来成本与风险。由于缺乏即时且明确的回报,核心企业与 供应商通常不愿进行供应商发展投资(Talluri 等,2010;Krause 等,2007)。此 外,当核心企业与供应商之间的关系较弱时,从供应商开发投资中获得的利益可能 不足以抵消所投入的成本(Talluri 等,2010)。因此,供应商开发投资的效率与回 报取决于核心企业及供应商的投资策略及其关系。
供应商开发研究主要以实证为主。此类实证研究关注所实施的供应商开发实践 及其结果,例如对供应商投资是否值得(Mahapatra 等,2012;Narasimhan 等, 2008;李等人2007;Humphreys 等,2004)。正式建模和分析评估已被用于评价 供应商发展(Dou 等,2014 2011,2010 2012 2010 2007;Friedl and Wagner; 白和萨基斯 a;Talluri 等;Chan and Kumar)。供应商发展在提升核心企业和供 应商绩效方面的有效性已得到实证支持,但在指导核心企业与供应商进行资源投资 决策方面的理论理解仍然有限,特别是在联合行动以实施投资活动方面。当前已发 表的研究尚未充分通过分析性研究探讨诸如规模报酬递增或规模报酬递减、合作或 非合作等具体投资策略在何时以及何种情况下能为供应商发展提供更大机会。本项 分析性研究提供了其他方法难以获得的见解(Krause 等,2007,2000)。
核心企业使用供应商开发投资的主要原因是提升供应商的能力。供应商能力 (绩效)体现在多个方面,包括交付数量、质量、短交货期、供应柔性、供应成本 等(Humphreys 等,2011)。供应交付数量是最基本的能力,其他能力与供应数 量相关或对其产生影响(Soo Kim 等,2014;Yang 等,2011;Taylor 和 Plambeck,2007)。例如,提高供应质量可以降低缺陷部件的退货率。此外,通 过提高供应柔性也可以增加供应数量。柔性能够在各种不确定性条件下保障供应数 量(Eng 等,2014;Swinney 等,2011)。
供应能力通常达到上限,从而有效限制了可能的供应产品数量。例如,汽车行 业在实践中受到现有劳动力、设施和/或原材料可用性的严格产能约束(Adida 和 Perakis,2014)。因此,本文的研究目标是探讨如何制定最优供应商发展投资策略, 通过联合行动提高供应商生产能力,使核心企业和供应商双方受益,同时最小化双 方的成本。
利用柯布‐道格拉斯生产函数,研究了合作(威尔helm 和 Kohlbacher 2011) 以及基于制造商‐零售商广告的博弈论建模发展(岳等人 2006;李等人 2002;黄和 李 2001),我们探讨了多种战略性供应商开发投资情景以提升供应商生产能力,并 讨论供应商开发投资的效率。研究发现,供应商发展伙伴关系策略与供需绩效具有 直接且显著的关系(Humphreys 等,2011)。我们将力求确定在不同关系中,合 作与非合作博弈情境下供应商开发投资的盈利能力水平。具体而言,我们识别出何 种博弈情况、同时决策与反应性顺序战略决策相比,更具利润优势。此外,我们还研究了在 Cobb‐Douglas函数的规模报酬递增或规模报酬递减情况下,供应商开发投资决策的可行性条件。
本文的贡献是多方面的。首先,这是第一篇尝试将合作与非合作的供应商发展 情境建模为博弈论分析评估的研究论文。这些模型有助于了解买方与供应商组织应 如何确定所需投入的资本资源和知识投资数量,以提升供应商生产能力,同时最大 化组织及供应链利润。其次,我们将柯布‐道格拉斯生产函数引入供应商开发投资模 型中,以探讨规模报酬对投资策略的影响。第三,研究结果构建出一种博弈理论结 构,可用于指导组织和供应商进行资源投资决策,或分析供应商开发投资中的协调 困难。
在本文的其余部分,我们首先介绍供应商发展研究文献中的一些初步背景,为 博弈论建模与检验奠定基础。然后,我们提出供应商开发投资模型的基本假设。随 后,对每种战略型供应商关系情境进行建模,并以命题形式给出均衡结果。这些结 果识别出八个主要命题,为一般的供应商发展投资策略提供了理论和/或管理上的重 要见解。数值分析部分还使我们能够识别仅通过解析表达式难以观察到的其他特征。
最后,我们以总结性结论和主要发现结束本文,并提出未来研究的潜在方向,其中 一些方向源于我们建模工作的局限性。

2 供应商发展与竞争力背景

2.1 供应商发展

“供应商发展(SD)”一词最早由Leenders(1966)提出。它被定义为核心企业为 提升供应商绩效和/或能力,同时实现其供应目标与组织目标所做出的努力( Govindan et al. 2010;Li et al. 2007;Krause and Ellram 1997)。组织竞争力 已高度依赖于供应链能力与响应能力(Li et al. 2012)。由于外包努力、定制化、 敏捷响应要求、全球化、技术以及多年来其他各种环境变化的影响,通过供应商发 展来帮助组织构建竞争力的做法日益增加(Liu and Chen 2012;Modi and Mabert 2007)。买方与供应商之间演变出的动态而复杂的环境,不仅要求在二元 环境中加强警惕与协作,也要求从更广泛的网络(多个供应商)视角进行协同( Choi and Wu 2009;Wu and Choi 2005)。

2.2 供应商开发投资与评估模型

供应商发展可能通过多种机制发生。一些文献从更远的距离角度考虑了供应商发展, 例如监控、审计以及提供需要满足的特定交易要求(刘等人2009)。我们认为供应 商发展应基于合作和主动共享以及投资的视角。尽管存在许多供应商开发投资类别,
例如财务、组织、知识共享和技术投资(Bai and Sarkis 2010b,2011),我们考虑两个维度来涵盖这些投资实践。这两个主要维度包括有形投资和无形投资。供应商开发投资实践可涉及资本资源、设备和人力投资,包括将具有专业 知识的员工派遣至供应商、对表现更好的供应商给予奖励、资助主要供应商的资本 支出以及技术投资。无形知识投资类别可能包括就成本控制问题培训供应商、向供 应商提供专业技术知识、设计产品开发培训、为供应商设定绩效目标以及针对问题 开展联合团队问题解决等项目。知识转移被认定为一种重要的支持性投资实践,有 助于组织推动供应商发展并提升供应商绩效(莫迪和马伯特2007)。此外,一些研 究者还考虑了关系构建与投资分类(瓦格纳和克劳斯 2009;瓦格纳 2006;纳拉西 姆汉等人 2008)。尽管有形与无形特征之间可能存在重叠,但这些分类作为理解核 心企业及其供应商在管理供应商开发关系中所采用的各种策略的起点仍具有实用价 值。
总之,供应商开发投资实践形式多样,可能包括新技术开发、引入新流程或建 立专业知识和知识,这些并不都以成本为中心。因此,我们泛化地研究供应商开发 投资,而不是像当前大多数博弈论建模文献那样主要关注成本降低和分担活动。这 些投资包括组织的知识投资,以影响供应商对新产品设计的理解,并帮助提升供应 商生产能力。供应商的资本资源投资可用于提高生产能力和完成知识转移。除了鼓 励供应商的即时参与外,组织还通过与供应商协作进行供应商开发投资,通过分担 资本资源投资成本来降低其总费用。
供应商开发文献主要依赖实证研究来定义供应商发展对组织投资实践与结果的 前因、投资实践以及结果(白等人 2012;白和萨基斯 2011,2010b)。一些分析性、 以形式化建模为导向的研究致力于评估各种供应商开发投资实践,包括利用模糊扩 展层次分析法(FEAHP)(陈和库马尔 2007)研究如何发展全球供应商;采用粗 糙集理论(白和萨基斯 2011,2010b)评估影响可持续及常规供应商发展计划的投 资项目;以及基于灰色网络分析过程的方法(Dou 等,2014),重点关注绿色供应 商发展参与计划及供应商参与倾向。
尽管每项分析性研究都为供应商开发投资管理提供了见解,但据我们所知,现 有文献中尚无任何论文就如何实施产能投资以最大化供应商和制造商利润提供理论 指导。这些分析评估在关注提升单个供应商及其生产能力绩效的文献中尚未得到体 现。

2.3 供应商开发投资协调

供应商开发投资协调侧重于供应商与买方之间的合作关系。尽管其旨在改善双方的 状况,但仍面临经典的敲竹杠问题:买方和供应商不愿投入各种资源来提升产能, 除非他们认为这些投资能够带来利润。多年来,博弈论分析模型方法也被用于评估买卖关系(马丁内斯‐德阿尔贝尼 兹和辛奇‐莱维 2013)。供应商与买方之间的合作模型在供应合同文献中已有一定历 史,其中仅价格、收益共享和协调合同是一些较受欢迎的合同类型,均侧重于协调 供应链激励(马丁内斯‐德阿尔贝尼兹和辛奇‐莱维 2013;斯廷格和胡赫泽梅尔 2010;姚等人 2008)。
Cachon(2003) 对该领域进行了出色的综述,阐述了某些供应链合同如何推动供 应链实现更好的协调。据我们所知,现有文献主要关注为供应商提供间接合同激励 以促进协作投资。与这些侧重于最优数量和利润收益生成以确定最佳合同关系的模 型不同,本文聚焦于组织通过直接激励促使供应商参与供应商生产能力投资的博弈 论研究,并明确纳入供应商开发投资。对于合作,本研究采用了供应商发展的议价 模型(洛夫乔伊 2010;黄和李 2001)。目标是在双方之间保持总利润的公平分配。

3 模型描述与假设

面对新市场需求,组织通常需要供应商的合作来开发新产品并确保供应水平。供应 商能力的局限性可能需要针对某一特定客户组织进行大量投资。供应商不仅需要直 接投入一些资源来建设其生产能力,而且考虑到客户提出的特定新市场需求,采购 组织也可以直接对这些供应商进行投资。这些投资可以增强供应商的能力,以确保 新产品的顺利开发,并满足核心企业(客户)的客户对市场需求的要求。
这种情况为供应商发展投资策略问题的博弈论模型奠定了基础,并基于以下一般假 设。
(1)仅考虑核心组织‐供应商关系(二元关系)的供应商开发实践,尽管可能存在 多个二元关系。在这些两方博弈中,只涉及一个核心企业(O)和 n个供应商 (S)。
一个供应商集合可共同向核心企业提供产品。各方均希望通过供应商开发投资策略 实现自身或整体的财务与战略利益。供应商开发直接投资主要包括两大类:知识或 无形资源 x,以及更有形的资本和人力资源投资 y(白和萨基斯 2011)。
(2) 基于新产品的无形知识与专长的供应商发展投资策略仅为核心企业的成本负担。
也就是说,供应商用于最终新产品的知识只能从核心企业获取。核心企业通过向供 应商提供特定新产品所需的全部必要知识,进行知识转移(无形)投资x,这种情 况发生在关系中出现资产专用性时。1这些无形知识资源有助于改善供应产品特性, 例如降低材料和产品的缺陷率、提高产量,并影响供应商产品数量和产能。
资产专用性是指供应商为满足特定客户的需求而进行能力建设投资的情况。
(3) 为了确保供应商发展的实施,供应商需要投入必要的人力和资本资源y以参与各 种供应商发展活动。有形资本和资源投资的成本可由供应商和核心企业共同承担, 并与“参与”率挂钩。这些资本资源将直接用于提升供应商的生产能力。
(4) 知识或无形投资 x以及有形资本和人力资源投资 y的直接结果是提升供应商生 产能力。核心企业的边际利润为 ρO,供应商的边际利润为 ρS i。双方均需承担一定 的供应商发展投资成本,并从供应商生产量的增加中获得一定利润。
(5) 我们假设市场需求非常大。也就是说,我们可以认为供应商的商品需求将存在, 并且组织将生产更多的最终新产品,从而获得更高的利润。
(6)我们旨在讨论经典非合作模型与本文所构建的合作模型之间的关系。然后, 我们研究核心企业与供应商在供应商发展投资三种情景下的互动关系。第一种情景 采用一种博弈结构,将核心企业与供应商之间的互动关系建模为平等地位非合作; 第二种情景采用一种博弈结构,将核心企业与供应商之间的互动关系建模为领导者‐ 追随者地位非合作;第三种情景则构建了一种合作博弈结构。
利用这些假设,我们首先建立一个结合了投资和生产要素的生产函数。我们可以从一个试图整合有形和无形贡献对供应商发展及绩效影响的生产函数开始,此处 的结果会影响供应产品的数量。柯布‐道格拉斯函数已被用于建立有形(资本资产) 和无形(知识)投资之间的关系(Griliches 1979)。该情况下的基本假设是针对研 发投资,而本文模型的重点则是供应商发展投资。该生产函数是资本资源和知识投 资的非线性函数。其他研究人员(Jaffe 1989;Patrick Rondéa 和 Hussler 2005; Subhashish 和 Savitha 2006)也使用了类似的知識生产函数关系来研究宏观和微 观经济层面的分析。
在先前的研究中,基本生产函数 P(x, y) 被假定为随着 x 和 y 资源投资的增加达 到一个饱和点 θ。根据柯布‐道格拉斯函数,该基本生产函数可表示为:
$$P(x, y)= \theta+ \eta x^\alpha y^\beta + e \quad (1)$$
其中 θ, η, α 和 β 为正常数,e 表示环境不确定性(随机误差)。当前努力的弹性 α 和 β 称为准投资弹性,用于衡量当前努力对预期生产率 P(x, y) 的增量影响。
Huang 和 Li (2001) 使用类似的模型,$P(a,q)= \alpha - \beta a -\gamma q -\delta$,用于零售商与 制造商之间的合作广告博弈。在他们的分析中,研究了一个制造商和一个零售商之 间的广告协作,并采用上限阈值模型(本文的模型则从基本的下限阈值开始)。本 研究旨在分析一个组织(O)与 n个供应商 (S)之间的多方博弈,各方希望通过供应商 发展实现自身或整个供应链的绩效提升投资策略。总结来说,对于函数表达式(1),使用了以下符号:
θ 是在没有进行供应商发展投资的情况下,供应商集合所能生产的供应产品或材料数量 的最小值;
x是核心企业对供应商发展的知识转移(投资)数量,y是核心企业及其供应商 在供应商发展中的资本资源投资数量;η是知识转移和资源投资对供应产品数量 (生产率)的影响系数;α是组织的知识投资弹性,用于衡量知识投资努力对预 期供应商生产率的增量效应;β是来自该组织及其供应商的资本资源投资弹性, 用于衡量资源投资努力对预期供应商生产率的增量效应;e是随机误差;
θ, η, α和 β是正常数,且 θ> 0, η> 0, 0< α, β< 1。
α和 β表示供应商对各类投资的反应能力和利用能力。通常我们还假设,知识 投资 α的弹性与资本资源投资 β的弹性不同,即知识学习曲线将不同于对资本资源 的实际直接投资,反映出两者对市场影响的差异。
假设$e \sim (0, \sigma^2)$,然后我们将供应产品的期望生产函数定义为:
$$P(x, y)= \theta+ \eta x^\alpha y^\beta \quad (2)$$
根据上述假设,该组织的预期利润可以表示为:
$$\pi_O= \rho_O(\theta+ \eta x^\alpha y^\beta)-x - ty \quad (3)$$
其中,ρO为核心企业的边际利润;t(0 ≤ t ≤ 1)为核心企业在供应商发展项目总 资本资源投资中的参与率。核心企业全额支付知识投资费用。
同样,供应商Si的预期利润可以表示为:
$$\pi_{S_i}= \rho_{S_i}(\theta+ \eta x^\alpha y^\beta) - \varepsilon_i y \quad (4)$$
其中ρS i是供应商Si,i= 1到n的边际利润,n为供应商总数;εi是供应商Si在资本资源投资上的参与率,$t+\sum_{i=1}^{n} \varepsilon_i= 1$。因此,供应商集合的预期利润可表示为:
$$\pi_S=\sum_{i=1}^{n} \pi_{S_i}=\left( \sum_{i=1}^{n} \rho_{S_i}\right)(\theta+ \eta x^\alpha y^\beta) -(1 - t)y \quad (5)$$
根据表达式(3)和(5),整个供应链通过供应商发展中的有形和无形投资所获得的预 期利润可表示为:
$$\pi= \pi_O+\pi_S=\left(\rho_O+ \sum_{i=1}^{n} \rho_{S_i}\right)(\theta+ \eta x^\alpha y^\beta) -x - y \quad (6)$$

3.1 非合作博弈均衡分析

利用利润方程,我们现在完成博弈论分析。我们首先从非合作博弈分析开始,采用纳什 和斯塔克尔伯格均衡分析。

3.1.1 纳什均衡模型

当供应链中的任何一方都不具有垄断权力时,纳什模型假设该组织及其供应商处于 平等地位。该组织与其供应商之间的博弈是非合作的。也就是说,在未达成有约束 力的协议的情况下,各方的目标是在遵守自身约束条件以及考虑其他供应链成员既 定(选择)策略的前提下,选择使自身利润最大化的策略。该最优解被称为纳什均 衡。接下来将展示确定纳什均衡的过程。
核心企业的策略定义为:
$$\max_{x,t} \pi_O= \rho_O(\theta+ \eta x^\alpha y^\beta)-x - ty \quad (7)$$
其中 0 ≤ t ≤ 1,x ≥ 0。
供应商集合 S 的策略定义为:
$$\max_{y,\varepsilon} \pi_S=\sum_{i=1}^{n} \rho_{S_i}(\theta+ \eta x^\alpha y^\beta)-(1 - t)y \quad (8)$$
其中 y ≥ 0。核心企业将选择知识投资x以及资本资源投资的参与率t,以通过目标函数(7)实 现其最大利润。供应商集合S随后将选择供应商开发资本资源投资y,以通过目标函 数(8)实现其最大利润。由于πO随t的增加而递减,且t ∈[0, 1],t= 0为纳什非合作 博弈中核心企业在供应商开发资本资源投资中的最优参与率。结合目标函数(7)对x 的一阶条件与目标函数(8)对y的一阶条件,并在给定t= 0的情况下求解x和y,可得 供应商发展的纳什均衡解$(x^ , y^ , t^ )$:
$$x^
=\left(\eta\alpha^{1-\beta}\beta^\beta \rho_O^{1-\beta}\left( \sum_{i=1}^{n} \rho_{S_i}\right)^\beta\right)^{\frac{1}{1-\alpha-\beta}} \quad (9)$$
$$t^ = 0 \quad (10)$$
$$y^
=\left(\eta\alpha^\alpha \beta^{1-\alpha}\rho_O^\alpha \left( \sum_{i=1}^{n} \rho_{S_i}\right)^{1-\alpha}\right)^{\frac{1}{1-\alpha-\beta}} \quad (11)$$
在固定资源投资下,供应商Si的策略定义为:
$$\max_{\varepsilon_i} \pi_{S_i} = \rho_{S_i}( \theta+ \eta x^\alpha y^\beta)- \varepsilon_i y \quad (12)$$
其中 0 ≤ εi ≤ 1 −t。
将 $x^ $, $y^ $代入表达式(12),供应商 Si在供应商发展中的供应商资本资源投资 的纳什均衡各供应商参与率 $\varepsilon_i^ $为:
$$\varepsilon_i^
= \frac{\rho_{S_i}}{\sum_{i=1}^{n} \rho_{S_i}} \quad (13)$$

3.1.2 斯塔克尔伯格均衡模型

当核心企业与供应商在供应链中地位不平等,且核心企业在关系中处于主导(领导) 地位时,适用斯塔克尔伯格博弈模型。在这种情况下,核心企业被称为领导者,供应商被称为追随者。采用斯塔克尔伯格博弈的供应商开发投资模型是一个顺序的两 阶段决策过程。在第一阶段,核心企业(领导者)选择知识投资量x和资源投资的参 与率t,以实现其最大利润。在第二阶段,所有供应商(追随者)同时根据核心企业 的决策确定其所需的供应商开发资本资源投资量y以及各自的参与率εi。这需要了解 核心企业的输入值x, t,并最大化核心企业的利润。
为确定斯塔克尔伯格博弈均衡,我们采用逆向递归方法。首先,通过观察核心 企业的输入值x, t和利润,将供应商的资本资源投资量y作为对核心企业决策的反应 来确定。我们首先令表达式(8)关于y的偏导数等于零:
$$\frac{\partial\pi_S}{\partial y} = \eta\beta\left( \sum_{i=1}^{n} \rho_{S_i}\right)x^\alpha y^{\beta-1} -(1 - t)= 0 \quad (14)$$
求解供应商集合的反应函数
$$y=\left(\frac{\eta\beta\left(\sum_{i=1}^{n} \rho_{S_i}\right)x^\alpha}{(1 - t)}\right)^{\frac{1}{1-\beta}} \quad (15)$$
在斯塔克尔伯格博弈递归求解方法的下一阶段,核心企业选择x和t并根据供应商的 反应函数(15)最大化其利润。将表达式(15)代入预期利润函数(7)中。核心企 业(领导者)的目标可表示为:
$$\max_{x,t} \pi_O= \rho_O\left(\theta+ \eta x^\alpha \left(\frac{\eta\beta\left(\sum_{i=1}^{n} \rho_{S_i}\right)}{(1 - t)}\right)^{\frac{\beta}{1-\beta}}\right) -x - t\left( \frac{\eta\beta\left(\sum_{i=1}^{n} \rho_{S_i}\right)}{(1 - t)}\right)^{\frac{1}{1-\beta}} x^{\frac{\alpha}{1-\beta}} \quad (16)$$
其中 0 ≤ t ≤ 1,x ≥ 0。
令表达式(16)对变量 x和 t的偏导数等于零。此步骤得到核心企业资本资源 投资的斯塔克尔伯格均衡解,即知识投资量和参与率,如表达式(17)和(18)所 示。
$$x̃=(\eta\beta^\beta\alpha^{1-\beta}(\rho_O+ \beta( \sum_{i=1}^{n} \rho_{S_i})))^{\frac{1}{1-\alpha-\beta}} \quad (17)$$
$$\tilde{t}= \frac{\rho_O -(1 - \beta)(\sum_{i=1}^{n} \rho_{S_i})}{\rho_O+ \beta(\sum_{i=1}^{n} \rho_{S_i})} \quad (18)$$
我们仔细观察并发现 $\tilde{t} \leq 0$从常识角度来看是不切实际的,当 $\rho_O \leq(1 - \beta)(\sum_{i=1}^{n} \rho_{S_i})$时。在此阶段,我们设定 t= 0并重新计算了资本资源投资下的斯塔克尔伯格均衡解知识投资量,当 $\rho_O \leq(1 - \beta)(\sum_{i=1}^{n} \rho_{S_i})$时,如表达式(19)和(20)所示。
$$x^{ }=\begin{cases} (\eta\beta^\beta\alpha^{1-\beta}(\rho_O+ \beta( \sum_{i=1}^{n} \rho_{S_i})))^{\frac{1}{1-\alpha-\beta}}, & \text{if } \rho_O>(1 - \beta)( \sum_{i=1}^{n} \rho_{S_i}) \ ((\alpha\rho_O^{1-\beta})^{1-\beta} \eta(\beta( \sum_{i=1}^{n} \rho_{S_i}))^\beta)^{\frac{1}{1-\alpha-\beta}}, & \text{if } \rho_O \leq(1 - \beta)( \sum_{i=1}^{n} \rho_{S_i}) \end{cases} \quad (19)$$
$$t^{
}=\begin{cases} \frac{\rho_O-(1-\beta)(\sum_{i=1}^{n} \rho_{S_i})}{\rho_O+\beta(\sum_{i=1}^{n} \rho_{S_i})}, & \text{if } \rho_O>(1 - \beta)( \sum_{i=1}^{n} \rho_{S_i}) \ 0, & \text{if } \rho_O \leq(1 - \beta)( \sum_{i=1}^{n} \rho_{S_i}) \end{cases} \quad (20)$$
将 $x^{ }$, $t^{ }$代入表达式(15)中,得到斯塔克尔伯格均衡下的资本资源投资为:
$$y^{ }=\begin{cases} (\eta\beta^{1-\alpha}\alpha^\alpha(\rho_O+ \beta( \sum_{i=1}^{n} \rho_{S_i})))^{\frac{1}{1-\alpha-\beta}}, & \text{if } \rho_O>(1 - \beta)( \sum_{i=1}^{n} \rho_{S_i}) \ ((\alpha\rho_O^{1-\beta})^\alpha \eta(\beta( \sum_{i=1}^{n} \rho_{S_i}))^{1-\alpha})^{\frac{1}{1-\alpha-\beta}}, & \text{if } \rho_O \leq(1 - \beta)( \sum_{i=1}^{n} \rho_{S_i}) \end{cases} \quad (21)$$
将 $x^{
}$、$y^{ }$代入表达式(12),我们得到供应商 Si在资本资源投资中的参与率 $\varepsilon_i^{ }$的斯塔克尔伯格均衡表达式:
$$\varepsilon_i^{**}=\begin{cases} \frac{\rho_{S_i}}{\rho_O+\beta(\sum_{i=1}^{n} \rho_{S_i})}, & \text{if } \rho_O>(1 - \beta)( \sum_{i=1}^{n} \rho_{S_i}) \ \frac{\rho_{S_i}}{\sum_{i=1}^{n} \rho_{S_i}}, & \text{if } \rho_O \leq(1 - \beta)( \sum_{i=1}^{n} \rho_{S_i}) \end{cases} \quad (22)$$

3.2 合作博弈均衡分析

到目前为止,我们已经考虑了核心企业与供应商集合之间基于纳什均衡和斯塔克尔 伯格均衡的供应商开发投资博弈情形。在这两类博弈中,均假设供应商与核心企业 之间为非合作关系。现在,我们将关注点转向另一种情形,即假设核心企业与其供 应商集合之间存在合作关系。在这种情形下,核心企业及其供应商的目标是共同最 大化整个供应链的利润。该情形可以建模为:
$$\max_{x,y} \pi=\left(\rho_O+\left( \sum_{i=1}^{n} \rho_{S_i}\right)\right)(\theta+ \eta x^\alpha y^\beta)-x - y \quad \text{where } x \geq 0, y \geq 0 \quad (23)$$
然后知识投资的合作博弈均衡解x和资本资源投资y为:
$$x=[\eta\beta^\beta\alpha^{1-\beta}(\rho_O+(\sum_{i=1}^{n} \rho_{S_i}))]^{\frac{1}{1-\alpha-\beta}} \quad (24)$$
$$y=[\eta\alpha^\alpha\beta^{1-\alpha}(\rho_O+(\sum_{i=1}^{n} \rho_{S_i}))]^{\frac{1}{1-\alpha-\beta}} \quad (25)$$

4 结果讨论

本节展示了三种博弈的结果,并指出了相应的管理启示。

4.1 分析弹性参数 α和 β

三种博弈的每个均衡解都包含弹性参数 α和 β。这意味着均衡解的质量取决于弹性参 数α和 β。因此,为了确定最佳决策,核心企业和供应商决策者应首先考虑弹性参数 α和 β在取值范围内的变化情况。使用柯布‐道格拉斯函数时,参数 α和 β的取值范 围为[0,1]。这些参数可能出现三种情况:
(1) 如果 α+ β> 1,该生产函数具有规模报酬递增;(2) 如果 α+ β< 1,该生产函 数具有规模报酬递减;(3) 如果 α+β= 1,该生产函数具有规模报酬不变;这意味 着将资本使用量 α和 β翻倍,产出也将翻倍P(x,y)。

4.1.1 可行性条件分析

在我们的模型中,弹性值 α和 β是正常数,用于衡量核心企业和其供应商分别

供应商发展投资策略:一项博弈论评估

4 结果讨论(续)

4.1 分析弹性参数 α和 β(续)

4.1.1 可行性条件分析(续)

增加知识和资本资源投资后供应量的潜在增长。根据三种博弈的均衡解,可行解的条件 是 α+ β不等于1。因此,对模型结果的讨论将集中在两种情形: α+β> 1和 α+β< 1。
首先,我们讨论可行解的条件,即组织及其供应商在进行供应商开发投资后都 能增加其经济利润。可行性条件可写为如下形式:
$$\pi_O - \rho_O\theta= \rho_O(\eta x^\alpha y^\beta)-x - ty> 0$$
$$\pi_S -\left( \sum_{i=1}^{n} \rho_{S_i}\right) \theta=\left( \sum_{i=1}^{n} \rho_{S_i}\right)(\eta x^\alpha y^\beta)-(1 - t)y> 0$$
$$\pi -\left(\rho_O+ \sum_{i=1}^{n} \rho_{S_i}\right) \theta=\left(\rho_O+ \sum_{i=1}^{n} \rho_{S_i}\right)(\eta x^\alpha y^\beta)-x - y> 0 \quad (26)$$
接下来对每种博弈的可行性条件进行分析。首先,纳什博弈的均衡解的所有条件都 满足可行性条件,因为 0< α, β< 1; 其次,斯塔克尔伯格博弈的可行性条件是:
$$(\eta\alpha^\alpha\beta^\beta(\rho_O+ \beta( \sum_{i=1}^{n} \rho_{S_i})))^{\frac{1}{1-\alpha-\beta}}(1 - \alpha - \beta)> 0 \quad (27)$$
第三,合作博弈的可行性条件是
$$(\eta\alpha^\alpha\beta^\beta(\rho_O+(\sum_{i=1}^{n} \rho_{S_i})))^{\frac{1}{1-\alpha-\beta}}(1 - \alpha - \beta)> 0 \quad (28)$$
有关可行性条件的证明,请参见附录。
命题1 斯塔克尔伯格博弈和合作博弈的可行性条件为 α+ β< 1,纳什博弈的可行性条 件为 α+ β> 1或 α+ β< 1。
命题 1表明,在“规模报酬递减”的情况下,组织及其供应商可以建立合作的、 领导者‐追随者(斯塔克尔伯格)或同时(平等)(纳什)的供应商开发投资关系。
命题 1还表明,在“规模报酬递增”的情况下,只有当存在非合作的平等关系时, 组织及其供应商才应进行供应商开发投资。
这一结果意味着,如果存在规模报酬递增,核心企业将不会偏好或选择合作的 或领导者—追随者关系。核心企业之所以不会这样做,是因为如果其提供资本资源 投资或与供应商建立合作的或领导者—追随者关系,成本将增加,却无法获得额外 利润。也就是说,核心企业无法通过增加供应量来收回供应商开发投资成本。此外, α+ β> 1表明,资本资源和知识投资每增加1%,供应商的生产量将增加超过1%。
即使核心企业不参与供应商开发投资,供应商自身也会实施供应商发展投资策略。
三种博弈的所有均衡解均为弹性参数 α和 β的某种函数;这意味着核心企业与 供应商可以对这两个参数进行参数分析,以制定更周密、最优的供应商发展投资策 略。参数范围可能因不同行业及其供应商状况和关系状态而异。因此,估计弹性参 数 α和 β的重要性将更加突出,因为供应商发展投资策略的质量在很大程度上取决 于估计参数的质量。因此,每种情况都将使用弹性参数之和 α和 β的不同参数值进 行评估。

4.1.2 比较各种投资规模报酬

类型1
if α+ β> 1, $\frac{\partial x^ }{\partial \rho_O}< 0$, $\frac{\partial x^ }{\partial \rho_{S_i}}< 0$, $\frac{\partial y^ }{\partial \rho_O}< 0$, $\frac{\partial y^ }{\partial \rho_{S_i}}< 0$.
命题2 在“规模报酬递增”的情况下,知识投资水平和资本资源投资水平与组织的边 际利润或供应商集合的边际利润在纳什博弈中呈负相关。
对于核心企业和供应商而言,在“规模报酬递增”情形下,无论是知识投资还 是资本资源投资,对供应商发展的追加投资均不具备边际利润。命题2表明,供应商 发展投资的动机来源于增加供应商的产品产量,而非来自组织及其供应商的边际利 润。因此,这是一种“套牢”问题:除非有迫切需要增加产量或产能,否则该组织 不愿投入资源或信息(α+ β> 1)来发展其供应商。在此情形下,核心企业与供应商 在进行供应商发展投资前,必须考虑诸如边际利润下降等风险回报。
类型2
if α+ β< 1, $\frac{\partial x^ }{\partial \rho_O}> 0$, $\frac{\partial x^ }{\partial \rho_{S_i}}> 0$, $\frac{\partial y^ }{\partial \rho_O}> 0$, $\frac{\partial y^ }{\partial \rho_{S_i}}> 0$;
$\frac{\partial x^{ }}{\partial \rho_O}> 0$, $\frac{\partial x^{ }}{\partial \rho_{S_i}}> 0$, $\frac{\partial y^{ }}{\partial \rho_O}> 0$, $\frac{\partial y^{ }}{\partial \rho_{S_i}}> 0$;
$\frac{\partial x}{\partial \rho_O}> 0$, $\frac{\partial x}{\partial \rho_{S_i}}> 0$, $\frac{\partial y}{\partial \rho_O}> 0$, $\frac{\partial y}{\partial \rho_{S_i}}> 0$.
命题3 在“规模报酬递减”情形下,知识投资水平和资本资源投资水平在所有三种博 弈情形中均与组织的边际利润或供应商集合的边际利润呈正相关。
命题 3表明,当核心企业与供应商同时在资本资源和知识投资上进行投资时, 双方联合的供应商发展努力将带来边际利润的增加。在这种情况下,核心企业和供 应商都有动力参与联合投资。核心企业和供应商能够通过不断增长的边际利润收回 供应商开发投资成本。该结果表明,如果核心企业或其供应商能够从供应商发展投 资中获得更高的回报,例如边际利润的提升,那么他们确实会优先选择此类投资而 非其他供应商发展投资。命题 3还揭示了在“规模报酬递减”情况下,边际利润对 供应商发展投资活动的影响。核心企业和供应商边际利润的增加将激发其对供应商 发展投资活动更大的兴趣。这些结果为更清晰地理解组织愿意投资于其供应商发展 的意愿提供了视角和潜在的管理策略。
以下对所有三种博弈情形的分析将仅基于“规模报酬递减”情形。

4.2 共同开发知识投资水平 x和资本资源投资水平 y 的比较

由命题3以及表达式($\frac{\partial y}{\partial t}> 0$在斯塔克尔伯格博弈中的偏导数y)可得:
Proposition4 (1)在三种博弈中,资本资源投资水平y与知识投资水平x呈正相关; (2)在斯塔克尔伯格博弈中,资本资源投资水平y与核心企业的参与率t呈正相关。
命题 4(1)表明,供应商在供应商发展项目上的高投资会激励核心企业增加对 供应商知识能力的投资。核心企业可以通过控制知识投资水平,来帮助管理供应商 的资本资源投资水平,使之符合核心企业自身的期望。本质上,该命题意味着更高 的核心企业知识投资将与更高的当前资本资源投资相关联,从而提升供应商生产能 力。由于资本资源投资的增加,预计供应商将为当前的供应商发展项目做出更大的 贡献。实际上,供应商在观察到客户对其生产能力的投资后,应投资于类似或同步 的项目,以充分利用客户(核心企业)的初始投资。
命题 4(2)表明,如果一个核心企业(领导者)更充分地以资本资源投资参与 供应商发展,则会影响其他供应商(追随者)的额外投资。因此,核心企业(领导 者)的参与可作为供应商(追随者)可能进行的资本资源投资的一个指标。该命题 还揭示了协作努力所带来的利益如何在参与者之间分配(萨马达和卡迪亚拉 2006)。
通过使用x和y的均衡解来评估三种博弈类型下的投资数量,结果得到5(命题5的证明见 附录。
命题5
$$x \geq\left( \frac{\rho_O+(\sum_{i=1}^{n} \rho_{S_i})}{\rho_O+ \beta(\sum_{i=1}^{n} \rho_{S_i})}\right)^{\frac{1}{1-\alpha-\beta}} x^{ } \geq\left( \frac{1}{1 - \beta}\right)^{\frac{1-\beta}{1-\alpha-\beta}} x^*;$$
$$y \geq\left( \frac{\rho_O+(\sum_{i=1}^{n} \rho_{S_i})}{\rho_O+ \beta(\sum_{i=1}^{n} \rho_{S_i})}\right)^{\frac{1}{1-\alpha-\beta}} y^{
} \geq\left( \frac{1}{1 - \beta}\right)^{\frac{\alpha}{1-\alpha-\beta}} y^*.$$
命题 5表明,合作博弈的知识投资数量x和资本资源投资数量y至少比非合作博 弈均衡下的供应商开发投资高出$\left( \frac{\rho_O+(\sum_{i=1}^{n} \rho_{S_i})}{\rho_O+\beta(\sum_{i=1}^{n} \rho_{S_i})}\right)^{\frac{1}{1-\alpha-\beta}}$。
该结果表明,为了使整个供应链实现最大利润,协作双方都需要投入更多的资 本资源和知识。双方都需要建立更高的投资能力。增加的比例值$\left( \frac{\rho_O+(\sum_{i=1}^{n} \rho_{S_i})}{\rho_O+\beta(\sum_{i=1}^{n} \rho_{S_i})}\right)^{\frac{1}{1-\alpha-\beta}}$与供应商的边际利润、组织的边际利润以及弹性参数 α和 β相关。这一结果 告诉我们,组织与供应商之间的合作取决于他们的边际利润和投资弹性参数。

4.3 均衡利润的比较

现在将纳什均衡利润与斯塔克尔伯格均衡利润进行比较。根据巴斯阿尔和奥尔德斯 理论(巴斯阿尔和奥尔德斯1982)可知,$\pi_O^{ } \geq\pi_O^*$,这
意味着核心企业的斯塔克尔伯格均衡利润不会低于纳什均衡利润。
我们还可以比较 $\pi_S^{
}$和$\pi_S^ $之间的差异。在这种情况下,巴斯阿尔和奥尔德斯理论 可能不成立。也就是说,供应商利润可能与核心企业的均衡利润遵循不同的模式。为了 得出关于供应商均衡利润的命题,我们首先建立 $\pi_S^{ }$和$\pi_S^ $之间的关系表达式,如(29) 所示。
$$\pi_S^{ } -\pi_S^*=\begin{cases} (1 - \beta)(\sum_{i=1}^{n} \rho_{S_i}) \rho_O^{\frac{\alpha+\beta}{1-\alpha-\beta}} (\beta^\beta\alpha^\alpha\beta)^{\frac{1}{1-\alpha-\beta}} \times\left(\left(1+ \frac{\beta(\sum_{i=1}^{n} \rho_{S_i})}{\rho_O}\right)^{\frac{\alpha+\beta}{1-\alpha-\beta}} -\left(\frac{\sum_{i=1}^{n} \rho_{S_i}}{\rho_O}\right)^\beta \sum_{i=1}^{n} \rho_{S_i}\right) \left( \sum_{i=1}^{n} \rho_{S_i}\right)(\beta^\beta\alpha^\alpha\beta\rho_O^\alpha)^{\frac{1}{1-\beta}})^{\alpha -1)}, & \text{if } \rho_O \leq(1 - \beta)(\sum_{i=1}^{n} \rho_{S_i}) \end{cases} \quad (29)$$
我们现在可以就两种博弈下的相对盈利能力在命题6中作出一些论述。
命题6
When $\rho_O \leq(1 - \beta)(\sum_{i=1}^{n} \rho_{S_i}),\pi_S^{
}> \pi_S^ $;
When $\rho_O>(1 - \beta)(\sum_{i=1}^{n} \rho_{S_i})$ and $(\frac{\rho_O}{\sum_{i=1}^{n} \rho_{S_i}})^{\frac{\beta}{\alpha+\beta}}+ \beta(\frac{\sum_{i=1}^{n} \rho_{S_i}}{\rho_O})^{\frac{a}{\alpha+\beta}}> 1,\pi_S^{
}> \pi_S^ $;
否则,$\pi_S^{ }< \pi_S^*$。
我们知道 $\pi_O^{
} \geq \pi_O^ $,这表明在给定边际利润的情况下,供应链中的领导者——核心企业—— 在斯塔克尔伯格均衡下的利润将高于纳什均衡下的利润。根据命题 6,我们可知当
$\rho_O>(1 - \beta)(\sum_{i=1}^{n} \rho_{S_i})$ and $(\frac{\rho_O}{\sum_{i=1}^{n} \rho_{S_i}})^{\frac{\beta}{\alpha+\beta}}+ \beta(\frac{\sum_{i=1}^{n} \rho_{S_i}}{\rho_O})^{\frac{\alpha}{\alpha+\beta}}> 1$
或者 $\rho_O \leq(1-\beta)(\sum_{i=1}^{n} \rho_{S_i})$,供应商即使在斯塔克尔伯格博弈中作为追随者,其均 衡盈利能力也高于纳什均衡。然而,当$\rho_O>(1 - \beta)(\sum_{i=1}^{n} \rho_{S_i})$且 $(\frac{\rho_O}{\sum_{i=1}^{n} \rho_{S_i}})^{\frac{\beta}{\alpha+\beta}}+ \beta(\frac{\sum_{i=1}^{n} \rho_{S_i}}{\rho_O})^{\frac{\alpha}{\alpha+\beta}}< 1$时,有趣的是,这一结果表明,在追随者情况下, 斯塔克尔伯格均衡盈利能力低于纳什均衡盈利能力。
实际上,这一结果意味着供应商更倾向于同时进行(纳什博弈)结构;否则他 们更倾向于序贯(斯塔克尔伯格博弈)结构。然而,组织方作为领导者,总是更偏 好序贯(斯塔克尔伯格博弈)结构。
对于我们的下一个命题,我们将关注每个博弈的均衡利润。根据表达式(23), 整个供应链的联合优化,合作均衡博弈解(x,y)是最大供应链利润的解π。
因此,(x, y)是 π的最大值。总体而言,我们可知 π> π^{
}或π^ ,从而得到命题7。
命题 7 $\pi \geq\pi^{ }$或 $\pi^*$。其中 π是合作博弈利润均衡解,$\pi^{ }$是斯塔克尔伯格利润 均衡解,而 $\pi^*$是纳什利润均衡解。
这一结果表明,任何合作均衡方案所产生的供应链利润均高于非合作博弈均衡 值。该发现意味着,在合作关系下,核心企业与供应商集合所能获得的利润均高于 非合作关系下的利润。建立这种紧密的关系已直接与绩效相关联(Humphreys 等, 2011)。因此,双方将进一步加强合作与协作,以充分利用联合利润。在此情况下, 企业可以提供更多促进密切合作的途径,而不仅仅是采用纯市场交易流程进行开发。
例如,与其仅仅提供生产设备的资金支持,不如通过实际合作、培训以及持续的关 系监控与发展来增强合作关系和合作氛围。

4.4 资本资源投资参与率t的比较

命题8 (1)在纳什博弈中,核心企业仅提供必要知识以使其供应商满足核心企业的供 应需求,而不会投资资本资源来发展其供应商。(2)在斯塔克尔伯格博弈中,当 $\rho_O>(1 -\beta)(\sum_{i=1}^{n} \rho_{S_i})$时,核心企业(领导者)将分担一定比例的供应商发展中 的资本资源投资,否则将不参与资本资源投资;(3)在斯塔克尔伯格博弈中,核心企 业(领导者)对资本资源投资的参与率分别与其自身的边际利润正相关,与供应商 (追随者)的边际利润负相关。
命题 8表明核心企业的参与率影响核心企业与其供应商之间的关系。
命题8(1)表明,无论参数取何值,核心企业在非合作的平等关系下都不愿意 进行资本资源投资。由于核心企业与供应商各自独立行动,不会影响供应商对资本 资源投资水平的决策,因此该组织的参与率不会影响供应量函数。因此,从核心企 业的最佳利益出发,应仅提供必要知识,而不应为供应商发展提供资本资源。这一 结果不同于之前的协作发展情况,与命题7相关。在此环境和特征下,仅提供信息和 专业知识(如手册、说明、培训),而不进行实际的资本设备投资以及更深入的协 作,可能是核心企业最合适的策略。
命题8(2)告诉我们,核心企业(领导者)的参与率取决于双方的边际利润, 且资本资源投资参数 β将影响供应产品数量。命题8(2)包含四个含义。第一,如 果供应商(追随者)的边际利润相对于核心企业(领导者)的边际利润较高,则供 应商(追随者)更有可能进行资本资源投资以推动供应商发展。供应商将进行此类 资本资源投资,以促进供应商发展进程。在这种情况下,核心企业(领导者)没有 动力与供应商(追随者)分担供应商发展的资本资源投资成本。
用于发展目的。这种情况有助于核心企业(领导者)确定是否继续在联合行动中投入资本资 源。其次,供应商(追随者)可以制定策略,通过提供激励措施(如优先合作关系 和优先交付)来维持核心企业(领导者)的参与,从而提高核心企业(领导者)的 边际利润。可行的联合分摊比例对于维持健康的协作关系至关重要。该分析有助于 供应商(追随者)决定是否建立、维持或终止协作努力。这一发现也有助于解释由 于财务原因导致的供应商发展联合行动失败的情况。
第三,当 β减少导致$\rho_O<(1 - \beta)(\sum_{i=1}^{n} \rho_{S_i})$时,供应量将减少。这也将激励 供应商(追随者)即使在没有核心企业(领导者)财务支持的情况下,也更有动力 增加资本资源投资。
第四,较高的 β会使核心企业(领导者)处于更强的领导地位,从而促使核心 企业(领导者)加大对供应商发展的资本资源投资。例如,如果供应商(追随者) 处于相对弱势的地位,作为追随者,其进行资本资源投资的积极性会较低。在这种 情况下,作为供应商(追随者)可确保获得一定数量的利润。
命题 8(3)表明,核心企业(领导者)的最优参与率取决于核心企业(领导者) 的边际利润和供应商(追随者)的边际利润。在此情景下,由于供应商(追随者) 的边际利润较高,即使核心企业(领导者)仅投入少量资本资源投资,供应商(追 随者)也有很强的动力投入更多资本资源用于供应商开发。这种联合行动的程度单 调依赖于边际利润。如果供应商(追随者)的边际利润增加,则核心企业(领导者) 不会提高其参与水平。如果核心企业(领导者)的边际利润增加,他们也不会降低 在资本资源投资中的参与率。
接下来,我们将探讨合作博弈情形下资本资源投资的参与率t。在此情形下,双 方对总利润进行公平分配。尽管命题7告诉我们,在所有可能的供应商发展投资策略 中,合作供应链的总利润达到最大,但需要注意的是,并非所有均衡解在边际盈利 范围内都是“可行的”。根据可行性假设的定义,核心企业与供应商均不愿在接受 合作情境下的利润低于非合作情境。
为了得到可行性均衡解,我们仍需确定均衡参与率,以确定具体的合作均衡解 值。我们将伙伴关系模型在(30)中的最优解集合表示为 Z:
$$Z={(x, t, y, \varepsilon_i):\Delta\pi_O(t) \geq 0,\Delta\pi_S(t) \geq 0, t_{min} \leq t \leq t_{max}} \quad (30)$$
合作博弈均衡参数集(x, t,y εi)是可行的,当它们满足以下条件时:
$$\Delta\pi_O(t)= \pi_O(x, t, y)-\pi_O^{ } \geq 0 \quad (31)$$
$$\Delta\pi_S(t)= \pi_S(x, t, y)- \max(\pi_S^*,\pi_S^{
}) \geq 0 \quad (32)$$
当 0 ≤tmin< tmax ≤ 1时,我们有一个可行解。因此,对于任何满足t的值,若其符合tmin< t < tmax,$\Delta\pi_O(t)> 0$且$\Delta\pi_S(t)> 0$,该合作博弈都存在一个可行均衡解。这一结果意味着存 在供应商发展
投资策略,使得核心企业与供应商的利润均优于非合作均衡解。当t= tmax时,与斯 塔克尔伯格博弈或纳什博弈的基准均衡盈利能力相比,供应商获得合作博弈所产生 的全部盈利能力;当t= tmin时,与斯塔克尔伯格博弈的基准均衡盈利能力相比,核 心企业获得合作博弈所产生的全部盈利能力。此时,t成为核心企业与供应商集合之 间如何分配合作博弈所产生的剩余利润的决策因素。确定t的值成为核心企业与供应 商集合之间的合作谈判问题。
我们将 tmin< tmax ≤ 0 或 1 ≤ tmin< tmax 的情形定义为不可行。这种不可行 性存在的原因是核心企业与供应商之间难以形成合作局面:当 tmin< tmax ≤ 0 时,与 非合作情境相比,核心企业在合作情境下的盈利能力会下降,即使供应商集合仍然 承担全部资本资源投资(即 t= 0)。而如果 1 ≤ tmin< tmax,则即使核心企业承 担全部资本资源投资 (t= 1),供应商在合作情境下的利润也会低于非合作情境。因 此,为了维持整个供应链的盈利能力,供应链伙伴需要通过额外的再分配努力来调 整各自的利润,而这种再分配并非来自合作博弈本身。这种再分配是必要的,以确 保合作情境下的整体盈利能力高于非合作情境。这种事后的盈利能力再分配,可促 成可行解的出现。该再分配可基于下文讨论的议价模型进行。

4.4.1 议价模型分析

我们现在利用(王等人2011年;黄和李 2001)提出的纳什议价模型的发展,来得出 合作博弈的协商解。现在的问题是确定合作博弈所产生的超额盈利能力如何在供应 链参与者之间进行分配。各方可以通过对资本资源投资中的参与率 y进行谈判,以 确定剩余利润分配。
将合作、斯塔克尔伯格或纳什博弈的均衡参数代入各自的均衡利润方程表达式 (31)和(32),我们得到(33)中的表达式:
$$K_1= \beta\rho_O[(x^{ })^\alpha (y^{ })^\beta -(x)^\alpha (y)^\beta ]+ x^{ } -x+ t^{ }y^{ }$$
$$K_2= \beta\left( \sum_{i=1}^{n} \rho_{S_i}\right)[(x^{
})^\alpha (y^{ })^\beta -(x)^\alpha (y)^\beta ]+(1 - t^{ })y^{ } - y$$
or= $\beta\left( \sum_{i=1}^{n} \rho_{S_i}\right)[(x^
)^\alpha (y^
)^\beta -(x)^\alpha (y)^\beta ]+(1 - t^ )y^ - y$
$$t_{min}= -K_2 / y$$
$$t_{max}= K_1 / y \quad (33)$$
然后 $\Delta\pi_O(t)=K_1 -ty$,$\Delta\pi_S(t)=K_2+ty$。为了得到一个谈判解,我们将合作博弈 的纳什议价模型应用于该供应商开发投资分析。不失一般性,假设核心企业和供应商集 合具有线性效用函数:$U_O(\Delta\pi_O)=\Delta\pi_O$,$U_S(\Delta\pi_S)=\sum_{i=1}^{n} \pi_{S_i}$(参见(冯·诺依曼和 摩根斯坦1953年;费什伯恩1970年;基尼和拉法1976年)关于效用理论
细节)。基于纳什议价模型,供应商开发投资的最优方案使用以下方程:
$$\max\Delta\pi_O(t)\left(\sum_{i=1}^{n} \Delta\pi_{S_i}(\varepsilon_i)\right) \quad (34)$$
其中tmin ≤ t ≤ tmax 然后让表达式 $\Delta\pi_O(t)(\sum_{i=1}^{n}\Delta\pi_{S_i}(\varepsilon_i))=(K_2+ ty)(K_1 -ty)$对 t的偏导数等于零。
我们得出核心企业协商的资本资源投入参与率的以下解:
$$t=(t_{min}+ t_{max}) /2 \quad (35)$$
通过将t代入表达式$\Delta\pi_O(t)$和$\sum_{i=1}^{n}\Delta\pi_{S_i}(\varepsilon_i)$,我们可知:
$$\pi_O(t)=\sum_{i=1}^{n} \pi_{S_i}(\varepsilon_i)= \frac{\pi}{2} \quad (36)$$
因此,利用纳什议价模型,核心企业与供应商群体将对剩余利润进行均分。
由于存在多个供应商,我们将讨论他们之间的盈利分配如何确定。显然,对于 任何满足εi的 εi ≥ 0, $\sum_{i=1}^{n} \varepsilon_i=1 -t$,$\Delta\pi_{S_i}(\varepsilon_i)> 0$,都存在一个关于多个供应商 的可行均衡解。由于$\pi_{S_i}$随着 $\varepsilon_i$的增加而递减,每个供应商都不会将参与率提高到 超过其他供应商的水平。多个供应商根据其边际利润决定参与率εi,如表达式(37) 所示。
$$\varepsilon_i=(1 - t) \frac{\rho_{S_i}}{\sum_{i=1}^{n} \rho_{S_i}} \quad (37)$$

5 数值分析

为了从这些初步的命题性发现中识别出其他见解,我们针对规模报酬递减情况进行 了一些数值和参数分析。其中部分分析将涵盖与命题相似的内容,而额外的分析则 具有互补性,从而带来进一步的见解。
在这种情况下,场景是核心企业A正处于新产品开发过程中。这项工作的部分 内容是组织A需要培养其供应商(B和C),以帮助向A提供必要的材料和组件。因 此,我们将关注两个供应商和一个核心企业。
我们假设一个值 θ= 10,即在进一步开发供应商以引入新产品之前的基本、无 量纲的产品数量;我们还假设知识投资和资本资源投资的影响系数为 η= 10;组织 的知识投资灵活性设定为 α= 0.3;供应商集合和核心企业的资本资源投资灵活性 均设定为 β= 0.4;供应商 B和C的边际利润分别设定为 ρB= 0.1 和 ρC= 0.3; 这些因素在数值示例的初始阶段将保持不变。

5.1 分析核心企业的边际盈利能力变化

我们从参数化调整组织 A的边际利润开始分析,而供应商的边际利润保持不变。核 心企业 A′的边际利润在 0.05 ≤ ρA ≤ 1.00 范围内进行评估,步长为 0.05,适用于 纳什(表 1)、斯塔克尔伯格(表 2)和合作博弈(表3)均衡。每个表格展示了知 识投资金额 (x)、核心企业资本资源投资参与率 (t)、资本资源投资金额 (y)、各供 应商在资本资源投资中的参与率 (εi),以及整个供应链及每个成员的盈利能力的均衡 结果。
纳什均衡结果表明,核心企业更高的边际盈利能力增长意味着整个供应链及各 供应链成员的盈利能力更高(见图1)。整个供应链的盈利能力增长与核心企业一样, 均以指数级非线性速率上升。供应商的盈利能力仅呈现线性增长,其中供应商C的 增长斜率略高于供应商B。在较低的边际盈利能力水平下,核心企业的盈利能力增长 起始值略低于供应商。斯塔克尔伯格博弈均衡值也呈现类似模式,不同之处在于供 应商的盈利能力以非线性速率增长。合作博弈的可行区域也表现出相同的结果。在 所有这些情况下,供应链应支持核心企业提高其利润率,因为无论采用何种博弈策 略,预计供应链每个成员都将从中获益。

表1 纳什均衡 核心企业的边际利润 参数分析 结果
ρA x * t * y * εB * εC * π * π A * π B * π C *
0.05 0.04 0.00 0.45 0.25 0.75 5.27 0.60 1.17 3.51
0.10 0.17 0.00 0.90 0.25 0.75 6.74 1.39 1.34 4.01
0.15 0.38 0.00 1.35 0.25 0.75 8.41 2.38 1.51 4.52
0.20 0.67 0.00 1.80 0.25 0.75 10.27 3.57 1.67 5.02
0.25 1.05 0.00 2.25 0.25 0.75 12.32 4.96 1.84 5.53
0.30 1.52 0.00 2.69 0.25 0.75 14.58 6.54 2.01 6.03
0.35 2.06 0.00 3.14 0.25 0.75 17.03 8.31 2.18 6.54
0.40 2.69 0.00 3.59 0.25 0.75 19.68 10.29 2.35 7.04
0.45 3.41 0.00 4.04 0.25 0.75 22.52 12.46 2.52 7.55
0.50 4.21 0.00 4.49 0.25 0.75 25.56 14.82 2.68 8.05
0.55 5.09 0.00 4.94 0.25 0.75 28.80 17.39 2.85 8.56
0.60 6.06 0.00 5.39 0.25 0.75 32.23 20.15 3.02 9.06
0.65 7.12 0.00 5.84 0.25 0.75 35.86 23.10 3.19 9.57
0.70 8.25 0.00 6.29 0.25 0.75 39.69 26.26 3.36 10.07
0.75 9.47 0.00 6.74 0.25 0.75 43.71 29.61 3.53 10.58
0.80 10.78 0.00 7.19 0.25 0.75 47.93 33.15 3.69 11.08
0.85 12.17 0.00 7.64 0.25 0.75 52.35 36.89 3.86 11.59
0.90 13.64 0.00 8.08 0.25
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值