归并排序
使用分治法:分而治之
分:
- 递归地拆分数组,直到它被分成两对单个元素数组为止.
- 然后,将这些单个元素中的每一个与它的对合并,然后将这些对与它们的对等合并,直到整个列表按照排序顺序合并为止.
治:
- 将2个排序列表合并为另一个排序列表是很简单的.
- 简单地通过比较每个列表的头,删除最小的,以加入新排序的列表.
- O(n) 操作
图示:

动图:

实现
# 合并
def merge(a, b):
c = []
while len(a) > 0 and len(b) > 0:
if a[0] < b[0]:
c.append(a[0])
a.remove(a[0])
else:
c.append(b[0])
b.remove(b[0])
if len(a) == 0:
c += b
else:
c += a
return c
# 排序
def merge_sort(li):
if len(li) <= 1:
return li
# 整除2
m = len(li) // 2
a = merge_sort(li[:m])
b = merge_sort(li[m:])
return merge(a, b)
算法分析
- 平均时间复杂度:O(nlog2n)
- 最好时间复杂度:O(nlog2n)
- 最坏时间复杂度:O(nlog2n)
- 空间复杂度:O(n)
- 稳定性:稳定的
快速排序
从数列中挑出一个元素,称为 “基准”(pivot);
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。
在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

实现
简易版
# 快速排序1
def quick_sort_one(li):
if len(li) <= 1:
return li
v = li[0]
left = quick_sort_one([i for i in li[1:] if li[i] <= v])
right = quick_sort_one([i for i in li[1:] if li[i] > v])
return left + v + right
partition分区
import random
def quick_sort(li, left, right):
if left < right: # 待排序的区域至少有两个元素
mid = partition(li, left, right)
quick_sort(li, left, mid - 1)
quick_sort(li, mid + 1, right)
# partition分区
def partition(li, left, right):
tmp = li[left]
while left < right:
while left < right and li[right] >= tmp:
right -= 1
li[left] = li[right]
while left < right and li[left] <= tmp:
left += 1
li[right] = li[left]
li[left] = tmp
return left
li = list(range(100))
random.shuffle(li)
quick_sort(li, 0, len(li) - 1)
print(li)
算法分析
- 平均时间复杂度:O(nlog2n)
- 最好时间复杂度:O(nlog2n)
- 最坏时间复杂度:O(n2)
- 空间复杂度:O(nlog2n)
- 稳定性:不稳定的
堆排序
- 建立堆
- 得到堆顶元素,为最大元素
- 去掉堆顶,将堆最后一个元素放到堆顶,此时可通过一次调整重新使对有序
- 堆顶元素为第二大元素
- 重复步骤3,直到堆为空,排序结束

实现
import random
def sift(li, low, high):
# li表示树, low表示树根, high表示树最后一个节点的位置
tmp = li[low]
i = low
j = 2 * i + 1 # 初识j指向空位的左孩子
# i指向空位,j指向两个孩子
while j <= high: # 循环退出的第二种情况: j>high,说明空位i是叶子节点
if j + 1 <= high and li[j] < li[j + 1]: # 如果右孩子存在并且比左孩子大,指向右孩子
j += 1
if li[j] > tmp:
li[i] = li[j]
i = j
j = 2 * i + 1
else: # 循环退出的第一种情况:j位置的值比tmp小,说明两个孩子都比tmp小
break
li[i] = tmp
def heap_sort(li):
n = len(li)
# 1. 构造堆
for low in range(n // 2 - 1, -1, -1):
sift(li, low, n - 1)
# 2. 挨个出数
for high in range(n - 1, -1, -1):
li[0], li[high] = li[high], li[0] # 退出 棋子
sift(li, 0, high - 1)
li = list(range(100))
random.shuffle(li)
heap_sort(li)
print(li)
算法分析
- 平均时间复杂度:O(nlog2n)
- 最好时间复杂度:O(nlog2n)
- 最坏时间复杂度:O(nlog2n)
- 空间复杂度:O(1)
- 稳定性:不稳定的
~>.<~
本文详细介绍了如何使用Python实现归并排序、快速排序和堆排序,包括各自的算法思想、实现过程及性能分析。归并排序采用分治法,稳定且时间复杂度为O(nlog2n);快速排序在平均情况下效率高,但最坏情况下为O(n2),不稳定;堆排序空间效率高,为O(1),同样为O(nlog2n)的时间复杂度。
589

被折叠的 条评论
为什么被折叠?



