算法第一周:scanf、GCD、快速幂

1.scanf

scanf的返回值等于成功输入的个数。
遇到这个表达式:scanf("%d%d",&a,&b)!=EOF;
如果a和b都被成功读入,那么上面表达式的结果为2;
如果只有一个读入,那么上面表达式的结果为1;
如果a&&b都没有读入,那么上面表达式的结果为0(若a没有读入,则直接放弃b的读入);
如果遇到错误或者文件结尾,那么上面表达式的结果为EOF,对应的有符号数时-1;
对于没有明确结束标志的题目输入 可以用while(scanf("%d%d",&a,&b)!=EOF)来结束读入。
由于EOF=-1,也可以用按位取反符‘~’来简化。
上面那个等价于while(~scanf("%d%d",&a,&b));

2.欧几里得算法gcd(辗转相除法)

辗转相除法, 是求最大公约数的一种方法。它的具体做法是:用较小数除较大数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。
证明:
a可以表示成a = kb + r(a,b,k,r皆为正整数,且r<b),则r = a mod b
假设d是a,b的一个公约数,记作d|a,d|b,即a和b都可以被d整除。
而r = a - kb,两边同时除以d,r/d=a/d-kb/d=m,由等式右边可知m为整数,因此d|r
gcd(a,b)=gcd(b,r);
gcd(a,b)=gcd(b, a mod b );

int gcd(int a,int b)
{ 
	if(b==0)
		return a;
    return gcd(b,a%b); 
}

3.快速幂

快速幂算法能帮我们算出指数非常大的幂,传统的求幂算法之所以时间复杂度非常高(为O(指数n)),就是因为当指数n非常大的时候,需要执行的循环操作次数也非常大。所以我们快速幂算法的核心思想就是每一步都把指数分成两半,而相应的底数做平方运算。这样不仅能把非常大的指数给不断变小,所需要执行的循环次数也变小,而最后表示的结果却一直不会变。让我们先来看一个简单的例子:
3^10=333333333*3

//尽量想办法把指数变小来,这里的指数为10

3^10=(33)(33)(33)(33)(3*3)

310=(3*3)5

310=95

//此时指数由10缩减一半变成了5,而底数变成了原来的平方,求310原本需要执行10次循环操作,求95却只需要执行5次循环操作,但是310却等于95,我们用一次(底数做平方操作)的操作减少了原本一半的循环量,特别是在幂特别大的时候效果非常好,例如210000=45000,底数只是做了一个小小的平方操作,而指数就从10000变成了5000,减少了5000次的循环操作。

//现在我们的问题是如何把指数5变成原来的一半,5是一个奇数,5的一半是2.5,但是我们知道,指数不能为小数,因此我们不能这么简单粗暴的直接执行5/2,然而,这里还有另一种方法能表示9^5

95=(94)*(9^1)

//此时我们抽出了一个底数的一次方,这里即为91,这个91我们先单独移出来,剩下的9^4又能够在执行“缩指数”操作了,把指数缩小一半,底数执行平方操作

95=(812)*(9^1)

//把指数缩小一半,底数执行平方操作

95=(65611)*(9^1)

//此时,我们发现指数又变成了一个奇数1,按照上面对指数为奇数的操作方法,应该抽出了一个底数的一次方,这里即为65611,这个65611我们先单独移出来,但是此时指数却变成了0,也就意味着我们无法再进行“缩指数”操作了。

95=(65610)(91)*(65611)=1(91)*(65611)=(91)*(65611)=9*6561=59049

我们能够发现,最后的结果是9*6561,而9是怎么产生的?是不是当指数为奇数5时,此时底数为9。那6561又是怎么产生的呢?是不是当指数为奇数1时,此时的底数为6561。所以我们能发现一个规律:最后求出的幂结果实际上就是在变化过程中所有当指数为奇数时底数的乘积。



long long ksm(long long a, long long b) {
    long long ans = 1, base = a;
    while(b != 0) {
	if(b & 1 != 0) {//此处等价于if(b%2==1)
	    ans *= base;
	}
	base *= base;
	b >>= 1;//此处等价于b/=2;
    }
    return ans;
}

参考连接

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页