分析一次double强转float的翻车原因

人逢喜事精神爽,总算熬到下班撩~~
正准备和同事打个招呼回家,被同事拖住问了.
?‍♂️: 你们组做的那块代码,把double类型数据成float有问题啊?.
?‍♀️: 嗯?不对是正常啊,float精度是没有double高,但float能保存到小数点后好多位,对我们来说完全够用了!
?‍♂️: 不是啊,这不是小数点多少位的问题,而是现在整型数据,转出来也有问题啊,你看.

640?wx_fmt=png

?‍♀️: XX00?.... 这什么鬼?

看到这个结果,差点闪到我的老腰?,咋不按套路出牌呢?
然后,下班路上,感觉我好像被我挚爱的.Net欺骗了?,double强转float用了这么多年,咋说不对就不对了?.Net不靠谱啊!

当然,我内心还是相信.Net是清白的,所以刨根究底,网上找的资料大多是说这种强转会照成小数点后的精度的问题,可是造成整数位的问题精度问题却少有人提及.
为了理解这个问题,我们要从一些大学计算机基础的相关知识讲起?.

float和double有什么不同?

  1. float四个字节,double八个字节.

  2. float范围从10^-38到10^38 和 -10^38到-10^-38, double的范围从10^-308到10^308 和 -10^-308到-10^-308

当然了,这都是废话?, 重点是下面这条.

  1. float是单精度浮点数,double是双精度浮点数.

单精度与双精度什么区别

根据国际标准IEEE 754,任意一个二进制浮点数V可以表示成下面的形式:

640?wx_fmt=png

  • (-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。

  • M表示有效数字,大于等于1,小于2。

  • 2^E表示指数位。

举例来说,十进制的5.0,写成二进制是101.0,相当于1.01×2^2。那么,按照上面V的格式,可以得出s=0,M=1.01,E=2。

十进制的-5.0,写成二进制是-101.0,相当于-1.01×2^2。那么,s=1,M=1.01,E=2。

对于32位的单精度浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

640?wx_fmt=png

对于64位的双精度浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

640?wx_fmt=png

经过上面关于浮点数的介绍,相信你可能还是一头雾水,就像下面这幅漫画展示的那样?.

640?wx_fmt=png

浮点数转成内存存储

为了避免产生上面那种画马的跳跃,我们一小步一小步,看看浮点数据具体怎么在内存中存储的.双精度与单精度类似,这里我以单精度为例.

  1. 先将这个实数的绝对值化为二进制格式。

  2. 将这个二进制格式实数的小数点左移或右移n位,直到小数点移动到第一个有效数字的右边。

  3. 从小数点右边第一位开始数出二十三位数字放入第22到第0位。

  4. 如果实数是正的,则在第31位放入“0”,否则放入“1”。

  5. ⭐如果n 是左移得到的,说明指数是正的,第30位放入“1”。如果n是右移得到的或n=0,则第30位放入“0”。

  6. 如果n是左移得到的,则将n减去1后化为二进制,并在左边加“0”补足七位,放入第29到第23位。如果n是右移得到的或n=0,则将n化为二进制后在左边加“0”补足七位,再各位求反,再放入第29到第23位。

我们先用上述步骤尝试把9.0转化成二进制存储形式.

640?wx_fmt=png

我们可以通过这个地址校验计算结果的正确性. https://www.h-schmidt.net/FloatConverter/IEEE754.html
可以看到,与我们的计算结果完全一致.

640?wx_fmt=png

现在我们用上面的步骤,把照成翻车的83459338转成内存存储形式看看.

640?wx_fmt=png

通过在线工具转换后证实我们的转换完全正确.

640?wx_fmt=png

然后我们再把数据转回来.

640?wx_fmt=png

S是第31位,为0, E =0011001(25)+1=26, 重点在M,它是1.(有效数字位)即 1.00111110010111110100001

1.00111110010111110100001乘上2的26次方,为100111110010111110100001000,将其转换为十进制,为 83459336

没错,就是83459336,而不是83459338?
83459338=> 100111110010111110100001010
83459336=> 100111110010111110100001000
可以看到,两个数字转成成二进制后,倒数第二位产生了差异,而产生这种的差异的原因就是单精度浮点数小数位23位不足以存储所有二进制数(26位).
?这场事故告诉我们,强转虽好,容易翻车.

 
 

原文链接:https://www.cnblogs.com/CoderAyu/p/11489577.html


.NET社区新闻,深度好文,欢迎访问公众号文章汇总 http://www.csharpkit.com 

640?wx_fmt=jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值