微调个微软大语言模型来预测你的MBTI?

[编者按:快乐也辛苦的暑期实习就要结束了,部分优秀的同学已经在很短的时间里与我们一起找到了满足自己好奇心的办法,而且用很扎实的方式表达出来。如果希望能继续在学校里获得更多锻炼的机会,可以参考下面这篇文章:

正在学AI或者计算机的同学们,微软学生大使计划了解一下

或者关注我们智用人工智能应用研究院]

bd66500c08c81326e1091fce46554678.png

什么是MBTI?

现在社交中经常会说“我是i人”或“你真是个大e”之类的,就是说的MBTI测试的结果,迈尔斯-布里格斯类型指标(MBTI)是一种性格测试,将人们分为16种不同的性格类型。每种性格类型是四个字母的组合,每个字母代表一个不同的性格方面。

这四个方面是:

  1. 外向(E)与内向(I)

  2. 感觉(S)与直觉(N)

  3. 思考(T)与情感(F)

  4. 判断(J)与知觉(P)

借助大模型(LLMs)的强大功能,某些文本分类任务可以通过几行代码解决。所以我们是不是可以使用Hugging Face Transformers库来训练一个文本分类模型,以根据文本数据分类一个人的MBTI呢?Go!

数据集

我将使用一个我自己整理的MBTI数据集。有关更多信息,请点击查看原文。

简而言之,这是一个包含300万行的数据库,包含以下列:

  • author: 文本的作者

  • body: 文本数据

  • mbti: 作者的MBTI类型

  • E-I: MBTI中的外向(E)与内向(I)方面

  • N-S: MBTI中的直觉(N)与感觉(S)方面

  • F-T: MBTI中的情感(F)与思考(T)方面

  • J-P: MBTI中的判断(J)与知觉(P)方面

设置环境

尽管现在可以在CPU上运行许多LLM,但对它们进行微调仍然没有GPU不可行。因此,本教程需要一块具有超过40GB显存的GPU。我建议使用能够提供已安装CUDA和cuDNN的Ubuntu虚拟机的云计算服务。否则,你应该首先确保你的机器上安装了适当版本的CUDA和cuDNN。有关安装过程的更多信息,请参阅这里。

一切准备好后,我们可以开始创建一个新的Python环境并安装必要的库。

conda create -n mbti-tuning python=3.12.4
conda activate mbti-tuning

接着,我们需要安装以下库:

pip install numpy scikit-learn python-dotenv datasets transformers evaluate accelerate pytorch

加载数据集

为了保存模型,我们需要在Hugging Face网站上创建一个账户并获取访问密钥。我们可以将访问密钥保存在项目根目录下的.env文件中。

from huggingface_hub import login
from dotenv import load_dotenv
import os
load_dotenv()
login(token=os.getenv("HF_HUB_TOKEN"))

然后,你可以使用datasets库加载数据集。以下代码将从Hugging Face下载数据集或从缓存中加载数据集。

from datasets import load_dataset

mbti_data = load_dataset("minhaozhang/mbti", split='train')

为了确保有良好的训练-验证划分,我们将使用分层抽样。因此,我们需要先对列进行编码。

mbti_data = mbti_data.class_encode_column("mbti")
mbti_data = mbti_data.class_encode_column("E-I")
mbti_data = mbti_data.class_encode_column("N-S")
mbti_data = mbti_data.class_encode_column("F-T")
mbti_data = mbti_data.class_encode_column("J-P")

由于训练集包含大约230万行数据,训练所有数据可能会很慢。因此,我们将只使用10%的数据进行训练,再使用其20%的数据进行验证。

mbti_data = mbti_data.train_test_split(test_size=0.1, stratify_by_column="mbti", seed=0)
mbti_data = mbti_data["test"] # 丢弃90%的数据
mbti_data = mbti_data.train_test_split(test_size=0.2, stratify_by_column="mbti", seed=1)

定义模型

与Hugging Face上使用较旧的BERT模型的教程不同,我将使用微软于2024年发布的Phi-3模型。

MODEL = "microsoft/Phi-3-mini-4k-instruct"
TRAINED_MODEL = "Phi-3-mini-4k-instruct-mbti"

然后,我们可以定义模型和分词器。

from transformers import AutoTokenizer 

tokenizer = AutoTokenizer.from_pretrained(MODEL)

def preprocess_function(data):
    return tokenizer(data["body"], truncation=True)

tokenized_mbti_data = mbti_data.map(preprocess_function, batched=True)
del mbti_data # 节省内存

为了简化问题,我将只对MBTI的J-P方面进行分类。在这个数据集中,J-P方面的比例是60-40,它有一定的不平衡但并没有严重偏斜。因此,我将移除所有其他列。

tokenized_mbti_data = tokenized_mbti_data.remove_columns(['author', 'mbti', 'F-T', "E-I", 'N-S'])
tokenized_mbti_data = tokenized_mbti_data.rename_column('J-P', "label")

为了简化数据批处理并通过动态填充令牌提高效率,我们将使用DataCollator

from transformers import DataCollatorWithPadding

data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

为了评估我们的模型,evaluate包提供了许多开箱即用的指标。

import evaluate

# 使用3种不同的指标来评估模型
accuracy = evaluate.load("accuracy")
f1 = evaluate.load("f1")
matthews_correlation = evaluate.load("matthews_correlation")

import numpy as np

def compute_metrics(eval_pred):
    predictions, labels = eval_pred
    predictions = np.argmax(predictions, axis=1)
    accuracy_result = accuracy.compute(predictions=predictions, references=labels)
    f1_result = f1.compute(predictions=predictions, references=labels)
    matthews_correlation_result = matthews_correlation.compute(predictions=predictions, references=labels)
    return {**accuracy_result, **f1_result, **matthews_correlation_result}

我们还需要一个标签和ID之间的映射,以便模型在训练中进行损失计算。不正确的映射会导致损失计算中的NaN,使模型无法学习。

id2label = {0: "J", 1: "P"}
label2id = {"J": 0, "P": 1}

现在,我们可以使用transformers中的AutoModel来定义模型。

from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer

model = AutoModelForSequenceClassification.from_pretrained(
    MODEL, num_labels=2, id2label=id2label, label2id=label2id
)

微调LLMs

为了使用提供的AutoModelForSequenceClassification类,我们需要定义训练参数。

import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True

training_args = TrainingArguments(
    output_dir=TRAINED_MODEL,
    learning_rate=2e-5,
    per_device_train_batch_size=4, # 根据显存调整
    per_device_eval_batch_size=4, # 根据显存调整
    num_train_epochs=1, 
    weight_decay=0.01,
    eval_strategy="steps", # 根据数据大小调整
    save_strategy="steps", # 根据数据大小调整
    logging_steps=1000, # 根据数据大小调整
    eval_steps=1000, # 根据数据大小调整
    save_steps=1000, # 根据数据大小调整
    load_best_model_at_end=True,
    push_to_hub=True,
    optim="adamw_bnb_8bit",
    eval_accumulation_steps=2, # 根据显存调整
    gradient_accumulation_steps=2, # 根据显存调整
    tf32=True,
)

在这些训练参数中,使用了几种方法来加速训练过程并减少内存的使用。

  • 批量大小设置为4,以减少内存使用。

  • optim="adamw_bnb_8bit":使用AdamW和ByteNetBlock 8位量化,这将减少显存使用量4倍。有关更多信息,请参见这里。

  • gradient_accumulation_steps=2eval_accumulation_steps=2有效地将批量大小增加到8。

  • tf32=True,使用TensorFloat32进行训练。

9c144c2520b94ab04a483b4bde42a7c1.png

从这个图像中可以看到,使用tf32将牺牲精度以换取更小的内存使用率。TF32使用19位而不是32位来表示每个浮点数,从而减少了40%的内存使用。根据NVIDIA的研究,使用tf32训练的模型与使用fp32训练的模型性能非常相似。

你可以注意到我们没有使用bf16来微调模型。根据模型配置,Phi3模型实际上是使用bf16进行训练的。然而,由于某些未知的原因,如果在微调过程中使用bf16,损失将变为NaN。

现在,我们可以定义训练器并开始训练模型。

from torch import nn
from transformers import Trainer

class CustomTrainer(Trainer):
    def compute_loss(self, model, inputs, return_outputs=False):
        labels = inputs.get("labels")
        # 前向传递
        outputs = model(**inputs)
        logits = outputs.get('logits')
        # 计算自定义损失
        loss_fct = nn.CrossEntropyLoss(weight=torch.tensor([0.6, 0.4]).to('cuda'))
        loss = loss_fct(logits.view(-1, self.model.config.num_labels), labels.view(-1))
        return (loss, outputs) if return_outputs else loss

trainer = CustomTrainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_mbti_data["train"],
    eval_dataset=tokenized_mbti_data["test"],
    tokenizer=tokenizer,
    data_collator=data_collator,
    compute_metrics=compute_metrics,
)

在这里,我们编写了一个具有特殊损失函数的自定义训练器。如前所述,我们的数据不平衡,大致为60-40的比例。因此,我们使用了权重平衡方法,以防止模型变成一个主要分类器。

最后,我们终于可以开始训练模型了。

trainer.train()
trainer.evaluate()
trainer.save_model(TRAINED_MODEL)
trainer.push_to_hub()

这些代码将训练模型并将训练好的模型推送到你的Hugging Face仓库。

结果

如果将上述内容放入Jupyter Notebook中,你将看到类似于下图的结果。

ffd8aa3b4827d5c229f79bcf4949e373.png

随着训练损失和验证损失稳步下降,准确率在增长。在这个例子中,我们的模型在验证集上达到了约0.65的准确率。这个结果并不是特别好,但考虑到我们只使用了10%的数据和一个小型模型,这是一个不错的结果。如果你想要更好的结果,你可以尝试使用更大的模型、更多的数据和更多的训练时间。

总结一下:文本分类是自然语言处理(NLP)中的常见任务。它是根据文本内容将标签分配给一段文本的过程。例如,将电影评论分类为正面或负面,或者将新闻文章分类为体育、政治或娱乐。在大型语言模型(LLMs)出现之前,文本分类是通过传统的机器学习方法进行的,并且需要大量的特征工程。使用像Word2Vec、GloVe和FastText这样的词嵌入将文本转换为数值向量。然后,将这些向量输入到像逻辑回归、支持向量机或随机森林这样的机器学习模型中进行分类。这个过程可能很慢,并且需要大量的手动工作才能获得良好的结果。而大模型,特别是像微软Phi-3这样可以自己调着玩的模型对于这种能力的实现无疑是非常有利的工具。

如果你想要查看完整的代码,请点击查看原文。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值