我们碰到很多客户在思考大语言模型和智能体如何帮助他们的合规部门的合同、协议做合规审查。不过因为目前要依赖大量的规则写在提示词中,规则很难维护、无法穷举而且前后依存关系的复杂性让这些经验很难落地。解决方案是什么呢?我们让AI出一个看看。
核心思路:从“硬编码”规则到“知识驱动”的智能审查
与其将所有规则都写死在提示词中,不如构建一个更智能的系统,让AI能够理解和应用合规知识,而不仅仅是执行预设的指令。
具体解决方案:
- 1.构建结构化的合规知识库 (Compliance Knowledge Graph):
- 核心思想:
将合同、协议相关的法律法规、内部政策、行业最佳实践、历史合规案例等信息,以结构化的方式存储在一个知识图谱中。
- 知识表示:
使用实体(例如:合同条款、法律条文、机构、部门、风险类型)、关系(例如:包含、引用、适用于、禁止)和属性来表示合规知识。
- 优势:
- 易于维护和更新:
当法规或政策发生变化时,只需要更新知识图谱中的相应节点和关系,无需修改大量的提示词。
- 规则可追溯和解释:
可以清晰地追踪合同条款是否符合特定的法律法规,并解释其依据。
- 支持复杂的规则依赖:
可以通过图谱的结构自然地表达规则之间的层级关系、条件关系和例外情况。
- 可扩展性强:
可以方便地添加新的合规知识和规则。
- 易于维护和更新:
- 2.开发基于知识图谱的智能体 (Knowledge-Graph Powered Intelligent Agent):
- 核心思想:
让智能体能够查询和理解合规知识图谱中的信息,并将其应用于合同审查过程。
- 智能体能力:
- 语义理解:
理解合同文本的含义和结构。
- 知识查询:
根据合同内容和上下文,从知识图谱中检索相关的合规规则和信息。
- 规则推理:
基于检索到的规则和合同内容进行逻辑推理,判断合同条款是否合规。
- 风险识别:
识别合同中潜在的合规风险点,并给出风险等级和建议。
- 报告生成:
生成详细的合规审查报告,包括合规结论、风险提示和依据。
- 语义理解:
- 优势:
- 更智能的审查:
智能体能够理解规则的含义,而不是简单地匹配关键词。
- 处理复杂的依赖关系:
智能体可以根据知识图谱中的关系链,处理规则之间的复杂依赖。
- 减少对大量提示词的依赖:
核心的合规逻辑在知识图谱中,提示词可以更专注于引导智能体进行审查和报告。
- 更智能的审查:
- 核心思想:
- 3.结合自然语言指令和结构化查询:
- 用户交互:
合规人员可以通过自然语言向智能体提出更高级别的审查要求,例如:“审查这份合同是否符合最新的反垄断法?”
- 智能体执行:
智能体会将自然语言指令转化为对知识图谱的结构化查询,检索相关的法律条文和内部政策,并应用于合同审查。
- 4.引入机器学习和数据驱动的方法:
- 合规风险预测:
利用历史合同数据和合规审查结果,训练机器学习模型预测新合同的合规风险。
- 自动化规则发现:
通过分析大量的合同文本和合规案例,自动发现潜在的合规规则和模式,并将其添加到知识图谱中。
- 模型微调:
使用企业内部的合规数据对预训练的大语言模型进行微调,使其更适应公司的特定合规要求和合同风格。
- 合规风险预测:
- 5.构建人机协作的合规审查流程:
- 特别是合规方面,全交给AI是不可能的,所以我们这么办
- AI初审:
利用智能体对合同进行初步的合规审查,标记潜在的风险点。
- 人工复核:
合规专家对AI标记的风险点进行复核和确认,并对AI的审查结果进行反馈。
- 持续学习和改进:
将人工复核的结果反馈给AI系统,用于模型的持续学习和知识图谱的完善,不断提高审查的准确性和效率。
实施步骤建议:
- 1.合规知识梳理和建模:
组织合规部门的专家,对现有的法律法规、内部政策、合同模板、历史案例等进行梳理和分析,确定需要纳入知识图谱的合规要素和关系。
- 2.选择合适的知识图谱技术和工具:
根据数据量、复杂度和查询需求,选择合适的知识图谱存储、管理和查询工具。
- 3.开发智能体应用程序接口 (ACP或者A2A+MCP):
构建智能体交互方式,通过AI Agent Foundry的ACP或者MCP协议,使其能够与知识图谱进行交互,并提供合同审查的功能。
- 4.与现有合规系统集成:
将智能合规审查系统与企业现有的合同管理系统、审批流程等进行集成,实现无缝对接。
- 进行小范围试点和验证:
选择部分合同进行试点审查,收集用户反馈并进行优化。
- 逐步推广和迭代:
在验证有效性后,逐步将智能合规审查系统推广到更多的业务部门和合同类型,并持续进行迭代和改进。
- AI初审: