如何让语言模型回答更靠谱:用你的数据构建AI智能问答

语言模型越来越受欢迎,原因之一是它们能生成自然、连贯、甚至令人印象深刻的回答。尤其在聊天对话中,我们只需要用日常语言提问,就能获得看起来很有道理的答复。但问题来了——这些回答到底靠不靠谱?这就涉及一个关键概念:groundedness(有据可依)

什么是 groundedness?

groundedness 表示语言模型的回答是否“有根有据”,也就是:

  • 是否基于真实、可靠的信息?

  • 是否结合了特定语境或数据?

问题:回答可能“看着靠谱,其实是编的”

语言模型的训练数据,通常来自互联网上的大量文字。这意味着它并不了解你的具体业务或文档,回答也是“猜”出来的,甚至有时会编造不存在的东西。

例如:

我该用哪个产品来完成 X?

[AI 回答]:推荐使用 XR-2Z 产品。

但这个产品也许根本不存在!

解决方法:让 AI 回答基于你的真实数据

为了解决“凭空捏造”的问题,可以用 RAG(检索增强生成):

  1. 先查资料:根据问题去搜索你提供的真实数据;

  2. 再答问题:让 AI 用查到的资料来生成回答。

这样,AI 生成的内容不仅语法正确,而且内容真实、信息有据。

RAG 的流程长啥样?

  1. 用户提问

  2. 系统检索相关资料(文档、数据库等)

  3. 把这些资料加进 Prompt(提示词)

  4. 一起发送给语言模型(比如 GPT-4)

  5. AI 基于资料回答问题

如何让 Azure 的 AI 知道“你的数据”?

可以用 Azure AI Foundry 来构建自己的“智能助手(Agent)”,让它查指定的数据,再结合大模型生成回答。支持的数据来源包括:

  • Azure Blob 存储

  • Azure Data Lake Storage Gen2

  • Microsoft OneLake

  • 上传的文档(PDF、Word、文本等)

检索数据用什么工具?

最常用的是 Azure AI Search ——它可以对文件和数据内容建立搜索索引,让 AI 快速查找资料。常见检索方式:

  • 关键词搜索:匹配词语

  • 语义搜索:理解含义

  • 向量搜索:找“意思相近”的内容

  • 混合搜索:关键词 + 向量,效果更好

什么是向量搜索?举个例子

这两句话意思很接近:

"The children played joyfully in the park."
"Kids happily ran around the playground."

这两段文字虽然用词不同,但在语义上是相近的。通过为文本生成向量嵌入,可以用数学方式计算它们之间的语义关系。

你可以想象把这些文档中的关键词提取出来,并在一个多维空间中以向量形式表示:

不同向量之间的距离可以通过计算它们夹角的余弦值来衡量,这被称为余弦相似度(cosine similarity)。换句话说,余弦相似度可用于衡量文档与查询之间的语义相似性。

通过用向量表示词语及其含义,即便你的数据来源包含不同格式(如文本或图片)或语言,系统也能从中提取出相关的上下文信息。

如果你希望使用向量搜索来查询数据,就需要在创建搜索索引时生成嵌入向量。你可以使用 Azure AI Foundry中提供的 Azure OpenAI嵌入模型来为你的搜索索引生成这些向量。

如何在 Azure 上配置搜索索引?

  1. 上传数据到 Azure AI Foundry;

  2. 系统会自动生成嵌入向量;

  3. 使用 Azure AI Search 创建索引;

  4. 在应用中引用该索引完成智能问答。

总结:为什么要用 RAG?

问题

没有 RAG

使用 RAG

回答真实度

可能编造、不准确

结合真实数据,信息可靠

上下文支持

无法引用文档内容

可检索并引用数据

应用场景

仅限通用问答

企业数据问答、产品推荐等更多场景

如果想构建一个基于自有数据、真实可靠的智能问答系统,RAG 值得一试。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值