隻苓公子
码龄6年
关注
提问 私信
  • 博客:117,619
    动态:14
    117,633
    总访问量
  • 18
    原创
  • 1,702,844
    排名
  • 25
    粉丝
  • 0
    铁粉

个人简介:研究区块链共识、加密算法、go语言、K8s,Istio,Skywalking,java语言、分布式技术服务治理

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2018-10-19
博客简介:

sLiubala的博客

查看详细资料
个人成就
  • 获得61次点赞
  • 内容获得18次评论
  • 获得282次收藏
创作历程
  • 3篇
    2022年
  • 1篇
    2021年
  • 10篇
    2020年
  • 6篇
    2019年
成就勋章
TA的专栏
  • 排序
    1篇
  • 快排
    1篇
  • go语言
    4篇
  • 容器
    1篇
  • K8s
    1篇
  • 加密
    4篇
兴趣领域 设置
  • 后端
    golang
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

GO语言快速排序

go语言实现快速排序
原创
发布博客 2022.11.30 ·
291 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

Golang参数传递;值传递和引用传递、引用类型和非引用类型

Golang深入浅出理解参数传递
原创
发布博客 2022.09.24 ·
830 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Kubernetes 常用增删改查运行命令

K8s常用命令
原创
发布博客 2022.09.21 ·
1237 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Golang语言中float64转int可用向上取整或向下取整做四舍五入运算

1.Golang中没有float64转int的调用函数,但是给出了取整运算的函数。2.浮点型转int类型,本质是取整运算。假设x为float64类型取整运算又分为向上取整和向下取整,函数分别为math.Ceil(x)和math.Floor(x)2.1可以对数x分别向上取整和向下取整。2.2可以对数x+0.5,然后向下取整2.3可以对数x-0.5,然后向上取整值得注意的是取整后返回的数值依然是float64类型,需要用int类型强制转换!实例package mainimport (“fm
原创
发布博客 2021.05.14 ·
21431 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

Go语言安装Goland:The selected directory is not valid home for SDK.

首先区分SDK和Goland开发工具(环境)SDK下载安装: https://golang.google.cn/dl/开发环境(JetBrains 的系列产品,如 Idea,Pycharm,Goland等)。其中,Goland下载:https://www.jetbrains.com/go/download/
原创
发布博客 2020.12.08 ·
13695 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

Hash和哈希(散列)表

HashHash又称为散列,是把任意长度的输入(又叫做预映射pre-image)通过散列算法变成固定长度的输出,该输出就是散列值。Hash算法还有一个特点,就是很难找到逆向规律。在同一函数下,如果两个散列值是不相同的,那么这两个散列值的原始输入也是不同的。Hash算法又被称为散列算法。虽然被称为算法,但是其更像是一种思想。Hash算法没有一个固定的公式,只要符合散列思想的算法都可以被称为Hash算法。哈希表(散列表)若结构中存在和关键字K相等的记录,则必定在f(K)的存储位置上。由此,不需比较便
原创
发布博客 2020.05.15 ·
519 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Paillier同态加密算法

Paillier 公钥加密,是基于复合剩余类的困难问题。判定合数剩余类问题是指 N= p * q,其中p和q都是大素数,任意给定y∈ZN2∗y∈Z_{N^2}^*y∈ZN2∗​,使得z=yNmodN2z=y^N mod N^2z=yNmodN2,判定z是模N2N^2N2的N次剩余还是非剩余是困难的。与Paillier加密相关数学基础,例如gcd,lcm,二次剩余等理论可以查看我之前写的几篇博客...
原创
发布博客 2020.05.08 ·
18745 阅读 ·
9 点赞 ·
12 评论 ·
75 收藏

ElGamal加密算法的理解

原理:求解离散对数是困难的,而其逆运算可以应用平方乘的方法有效的计算出来。关于定义中循环群、生成元等基础概念的理解可以看上一篇文章整理https://blog.csdn.net/sLiubala/article/details/105952656ElGamal加密算法三部分:密钥生成、加密、解密密钥生成利用生成元g产生一个q阶循环群G从{1,…q-1}中随机选择一个xh=gx ...
原创
发布博客 2020.05.08 ·
1966 阅读 ·
1 点赞 ·
1 评论 ·
5 收藏

单位元、逆元、群、生成元、循环群,有限群的理解

单位元单位元是集合里一种特别的元素,与该集合里的二元运算有关。当单位元与其他元素结合时,并不会改变那些元素,也叫幺元。例:加法中 0 元素;乘法中 1 元素;若 a * e = a , e 称为右单位元;若 e* a = a , e 称为左单位元;若 e * a = a * e = a , e 同时为左单位元和右单位元,则e可称为双边单位元,简称单位元。逆元官方描述:逆元素 是指一个...
原创
发布博客 2020.05.06 ·
39108 阅读 ·
36 点赞 ·
3 评论 ·
122 收藏

CSDN 中Markdown编辑器中的上标和下标

1.上标2.下标例子显示结果:
原创
发布博客 2020.05.06 ·
469 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

gcd,lcm,同余理论、二次剩余、二次非剩余、和n次剩余通俗意义的理解

判断一个数是否为素数:威尔逊定理https://blog.csdn.net/sLiubala/article/details/105906882同余理论:https://blog.csdn.net/sLiubala/article/details/105906999a≡b( mod n ),c≡b( mod n ),则a +(-) c=b +(-) c (mod n),ac=bd(mod n...
原创
发布博客 2020.05.04 ·
3386 阅读 ·
2 点赞 ·
1 评论 ·
13 收藏

同余定理 A* B ≡ C (mod D) 此类公式的理解

AB / D =C即AB 对D取余,结果为C2.[AB-C]/D=0即AB减去C后的结果可整除D,余数为零具体的举例理解可以看上一篇文章。
原创
发布博客 2020.05.03 ·
2653 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

威尔逊定理公式的理解

( p -1 )! ≡ -1 ( mod p )1.123*…*(P-1)/p =K …(P-1)即(p-1)的阶乘对于p求余,结果为p-12.[(p-1)! + 1] / p = K …0即(p-1)的阶乘加1可整除p,对p求余为0对类似 A* B ≡ C (mod D) 的理解,可以查看下一篇文章。...
原创
发布博客 2020.05.03 ·
2263 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

go语言之进阶篇结构体成员变量为指针数据类型匿名字段

1、结构体指针类型匿名字段示例:package mainimport “fmt”type Person struct {name string //名字sex byte //性别, 字符类型age int //年龄}type Student struct {*Person //指针类型id intaddr string}func main(...
转载
发布博客 2020.02.25 ·
497 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

go语言扩展欧几里得算法求乘法逆元代码

package mainimport “fmt”func main(){var s intvar n intfmt.Scan(&s)fmt.Scan(&n)var x,y *intx=new(int)y=new(int)*x=0*y=0var d int=Exgcd(s,n,x,y)fmt.Println(*x,*y)var m int=Mod_reve...
原创
发布博客 2019.09.03 ·
639 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

go语言 在函数中传递指针变量 经典案例

package mainimport “fmt”func swap(p1,p2 *int){*p1,*p2=*p2,*p1}func main(){a,b:=10,20swap(&a,&b)fmt.Println(a,b)}
原创
发布博客 2019.09.03 ·
479 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

简要分析DES对称加密算法完成过程

原文:https://blog.csdn.net/m0_37962600/article/details/79912654#commentsedit总结:原理:该算法是是一个利用56+8奇偶校验位为64位的密钥,以64位为单位的块数据进行加密。计算过程:一、按照交换表-移位-交换表规则生成16个子钥(48位)二、用得到的子密钥对64位(K1,K2,…K16)通过子密钥交换规则生成最终L...
转载
发布博客 2019.08.27 ·
577 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

关于Ubuntu中Could not get lock /var/lib/dpkg/lock解决方案

说明apt程序正在运行$ sudo rm /var/lib/apt/lists/lock$ sudo rm /var/cache/apt/archives/lock$ sudo apt update
原创
发布博客 2019.02.26 ·
245 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

linux系统ubuntu18.04安装go的方法

1.下载GO安装包,谷歌官网有可能进不去,下面这个网址可以直接下载。$ wget https://golang.google.cn/dl/go1.11.5.linux-amd64.tar.gz2.在此权限直接解压压缩包到usr/local$ sudo tar -C /usr/local -xzf go1.11.5.linux-amd64.tar.gz3.创建GO目录$ mkdir $HO...
原创
发布博客 2019.02.25 ·
639 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏
加载更多