【JZOJ6094】循环流

探讨存在性的判断方法,针对特定条件下的流网络,通过构造性证明展示如何根据流量为1和2的边数量确定是否存在符合条件的循环流。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

你曾经有一个循环流(每个点均满足流量平衡条件),这个流网络上有 n 个点,
且每条边的流量只有 1 或 2,可能有重边却没有自环。显然,由于它是一个流网络,
它是一个弱连通图(将边视为无向边后为连通图)。遗憾的是你找不到这个流了,但
你曾经记下了它流量为 1 的边的数量和流量为 2 的边的数量。由于这个图的点数有
点多,你很有可能数错边数,因此你现在想知道存不存在这样一个流符合你记下的
数据。

Solution

⋅\cdot欺诈题
n=2n=2n=2时可以特判。
对于n>2n>2n>2的情况,如果全是流量为111的边,我们可以构造一种欧拉回路,提供一种思路:先从111走到nnn,覆盖111~nnn,中间可以走重复的点(不能走自环,且中途不能走到111),走a−1a-1a1条边,最后直接走到111
如果有流量为222的路径,我们先用222边从111走出覆盖点最多的一条链(可以走重点,同样不能走到111),记这时走到的点为xxx,那么从xxx111连一条111边,那么相当于所有的222边都变成了111边,那么接着从xxx按前面的策略往下走即可。
所以当b=0b=0b=0时,a≥na\geq nan有解;a=0a=0a=0时,b≥nb\geq nbn有解;其它情况,a−1+b>=na-1+b>=na1+b>=n有解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值