抽象代数精解【14】

群同构

基础

  • 设 G 是群,证明: G 是交换群的充分必要条件是映射 设G是群,证明:G是交换群的充分必要条件是映射 G是群,证明:G是交换群的充分必要条件是映射
    ϕ : x ⟼ x − 1 是 G 的同构映射。 \phi:x \longmapsto x^{-1}是G的同构映射。 ϕ:xx1G的同构映射。
    1. 充分性 ϕ : x ⟼ x − 1 是 G 的同构映射 ∀ x , y ∈ G ϕ ( x y ) = ( x y ) − 1 ϕ ( x ) ⋅ ϕ ( y ) = x − 1 y − 1 = ( y x ) − 1 ϕ ( x y ) = ϕ ( y x ) ϕ 为单映射,所以 x y = y x , G 为交换群。 2. 必要性 G 是交换群 , ∀ x , y ∈ G , x y = y x ϕ ( x ) = x − 1 , ϕ ( y ) = y − 1 ϕ ( x y ) = ( x y ) − 1 = ( y x ) − 1 = x − 1 y − 1 = ϕ ( x ) ϕ ( y ) 1.充分性 \\\phi:x \longmapsto x^{-1}是G的同构映射 \\\forall x,y \in G \\\phi(xy)=(xy)^{-1} \\\phi(x)\cdot\phi(y)=x^{-1}y^{-1}=(yx)^{-1} \\\phi(xy)=\phi(yx) \\\phi为单映射,所以xy=yx,G为交换群。 \\2.必要性 \\G是交换群,\forall x,y \in G,xy=yx \\\phi(x)=x^{-1},\phi(y)=y^{-1} \\\phi(xy)=(xy)^{-1}=(yx)^{-1}=x^{-1}y^{-1}=\phi(x)\phi(y) 1.充分性ϕ:xx1G的同构映射x,yGϕ(xy)=(xy)1ϕ(x)ϕ(y)=x1y1=(yx)1ϕ(xy)=ϕ(yx)ϕ为单映射,所以xy=yxG为交换群。2.必要性G是交换群,x,yG,xy=yxϕ(x)=x1,ϕ(y)=y1ϕ(xy)=(xy)1=(yx)1=x1y1=ϕ(x)ϕ(y)
  • 设 G 是群, a ∈ G , 规定映射 ϕ : x ⟼ a x a − 1 , ∀ x ∈ G 证明: ϕ 是 G 到 G 的同构映射,称为由 a 导出的内自同构 设G是群,a \in G,规定映射\phi:x \longmapsto axa^{-1},\forall x \in G\\证明 :\phi是G到G的同构映射,称为由a导出的内自同构 G是群,aG,规定映射ϕ:xaxa1,xG证明:ϕGG的同构映射,称为由a导出的内自同构
    1. x ∈ G , G 是群, a x 在 G 中, a − 1 也在 G 中,则 a x a − 1 ∈ G ϕ ( x ) = ϕ ( y ) , a x a − 1 = a y a − 1 , 则 x = y ,所以为单射。 2. ϕ ( x 1 ) = a x 1 a − 1 , y 1 = a x 1 a − 1 , y 1 ∈ G ϕ − 1 : y 1 ⟼ a − 1 y 1 a , ϕ − 1 ( y 1 ) = x 1 对于所有的 y , 存在 x ∈ G , 使得 ϕ ( x ) = y ,满射 3. ∀ x , y ∈ G , ϕ ( x ) = a x a − 1 , ϕ ( y ) = a y a − 1 ϕ ( x y ) = a x y a − 1 ϕ ( x ) ϕ ( y ) = a x a − 1 a y a − 1 = a x y a − 1 = ϕ ( x y ) 1.x\in G,G是群,ax在G中,a^{-1}也在G中,则axa^{-1} \in G \\\phi(x)=\phi(y),axa^{-1}=aya^{-1},则x=y,所以为单射。 \\2.\phi(x_1)=ax_1a^{-1},y_1= ax_1a^{-1}, y_1 \in G \\\phi^{-1}:y_1 \longmapsto a^{-1}y_1a,\phi^{-1}(y_1)=x_1 \\对于所有的y,存在x \in G,使得\phi(x)=y,满射 \\3.\forall x,y \in G,\phi(x)=axa^{-1},\phi(y)=aya^{-1} \\\phi(xy)=axya^{-1} \\\phi(x)\phi(y)=axa^{-1}aya^{-1}=axya^{-1}=\phi(xy) 1.xG,G是群,axG中,a1也在G中,则axa1Gϕ(x)=ϕ(y)axa1=aya1,x=y,所以为单射。2.ϕ(x1)=ax1a1,y1=ax1a1,y1Gϕ1y1a1y1a,ϕ1(y1)=x1对于所有的y,存在xG,使得ϕ(x)=y,满射3.∀x,yG,ϕ(x)=axa1,ϕ(y)=aya1ϕ(xy)=axya1ϕ(x)ϕ(y)=axa1aya1=axya1=ϕ(xy)
  • 在数学中,尤其是在集合论和函数论中,单射(Injective)、满射(Surjective)和双射(Bijective)是描述函数性质的三个重要概念。这些概念帮助我们理解函数如何在其定义域和值域之间映射元素。

单射(Injective)

一个函数被称为单射的,如果它的定义域中的每个元素都映射到值域中的不同元素。换句话说,对于函数 f : A → B f: A \rightarrow B f:AB,如果对于所有的 x 1 , x 2 ∈ A x_1, x_2 \in A x1,x2A,当 x 1 ≠ x 2 x_1 \neq x_2 x1=x2时,都有 f ( x 1 ) ≠ f ( x 2 ) f(x_1) \neq f(x_2) f(x1)=f(x2),则称 f f f是单射的。这意味着函数的每个输出值都是由唯一的输入值产生的。

满射(Surjective)

一个函数被称为满射的,如果它的值域中的每个元素都是定义域中某元素的像。换句话说,对于函数 f : A → B f: A \rightarrow B f:AB,如果对于所有的 y ∈ B y \in B yB,都存在至少一个 x ∈ A x \in A xA使得 f ( x ) = y f(x) = y f(x)=y,则称 f f f是满射的。这意味着函数的值域中的每个元素都至少被定义域中的一个元素所覆盖。

例子

  • 单射但非满射:考虑函数 f : N → N f: \mathbb{N} \rightarrow \mathbb{N} f:NN(自然数集到自然数集),定义为 f ( n ) = 2 n f(n) = 2n f(n)=2n。这是一个单射函数,因为每个自然数都映射到一个唯一的偶数,但它不是满射的,因为值域中没有奇数。
  • 满射但非单射:考虑函数 f : Z → N f: \mathbb{Z} \rightarrow \mathbb{N} f:ZN(整数集到自然数集),定义为 f ( n ) = ∣ n ∣ f(n) = |n| f(n)=n(绝对值)。这是一个满射函数,因为每个自然数都是某个整数的绝对值,但它不是单射的,因为例如 f ( − 1 ) = f ( 1 ) = 1 f(-1) = f(1) = 1 f(1)=f(1)=1
  • 双射:如果一个函数既是单射又是满射的,则称它是双射的。双射函数具有逆函数,这意味着每个输出值都可以唯一地映射回一个输入值。

理解这些概念对于深入学习数学,特别是在分析、代数和拓扑学中,是非常重要的。

  • 有理数加群 Q ,取非零有理数 a ,映射 ϕ : x ⟼ a x , ∀ x ∈ Q 有理数加群Q,取非零有理数a,映射\phi:x \longmapsto ax,\forall x \in Q 有理数加群Q,取非零有理数a,映射ϕ:xax,xQ
    1. x , y ∈ Q , ϕ ( x ) = a x , ϕ ( y ) = a y , ϕ ( x ) = ϕ ( y ) , a x = a y , a ≠ 0 , x = y ,单射 2. ϕ ( x a ) = a x a = x , 满射。 或者: ϕ ( x 1 ) = a x 1 , y 1 = a x 1 , y 1 ∈ Q ϕ − 1 : y 1 ⟼ 1 a y 1 , ϕ − 1 ( y 1 ) = x 1 ,满射。 3. ϕ ( x ) = a x , ϕ ( y ) = a y , ϕ ( x ) ϕ ( y ) = a x ⋅ a y = a x + a y = a ( x + y ) = ϕ ( x y ) 1.x,y \in Q,\phi(x)=ax,\phi(y)=ay,\phi(x)=\phi(y),ax=ay,a \ne 0,x=y,单射 \\2.\phi(\frac x a)=a\frac x a=x,满射。 \\或者:\phi(x_1)=ax_1,y_1= ax_1, y_1 \in Q \\\phi^{-1}:y_1 \longmapsto \frac 1 a y_1,\phi^{-1}(y_1)=x_1,满射。 \\3.\phi(x)=ax,\phi(y)=ay,\phi(x)\phi(y)=ax\cdot ay=ax+ay=a(x+y)=\phi(xy) 1.x,yQ,ϕ(x)=ax,ϕ(y)=ay,ϕ(x)=ϕ(y),ax=ay,a=0,x=y,单射2.ϕ(ax)=aax=x,满射。或者:ϕ(x1)=ax1,y1=ax1,y1Qϕ1y1a1y1,ϕ1(y1)=x1,满射。3.ϕ(x)=ax,ϕ(y)=ay,ϕ(x)ϕ(y)=axay=ax+ay=a(x+y)=ϕ(xy)

  • 同构和自同构作为数学中的概念,在多个领域有着广泛的应用。下面将分别举例说明同构和自同构的具体应用。

同构的具体应用
1. 代数结构中的同构

在代数学中,同构常用于不同代数结构之间的转换,保持结构的等价性。例如,考虑两个群 ( G , ⋅ ) (G, \cdot) (G,) ( H , ∗ ) (H, *) (H,),如果存在一个双射函数 f : G → H f: G \rightarrow H f:GH,使得对于所有的 a , b ∈ G a, b \in G a,bG,都有 f ( a ⋅ b ) = f ( a ) ∗ f ( b ) f(a \cdot b) = f(a) * f(b) f(ab)=f(a)f(b),则称群 G G G和群 H H H是同构的。这种同构关系允许我们在群 G G G上证明的定理或性质,可以直接应用到群 H H H上,因为它们在结构上是等价的。

2. 图论中的同构

在图论中,同构用于描述两个图之间的结构等价性。如果两个图 G G G H H H可以通过重新标记顶点的方式使得它们的边和顶点完全对应,则称这两个图是同构的。这种同构关系在图的对称性、等价类划分等问题中起着重要作用。例如,在计算机网络中,可以通过图的同构来判断两个网络拓扑结构是否等价,从而优化网络布局或资源分配。

3. 程序设计中的同构

在程序设计中,同构的概念可以应用于数据结构的转换和优化。例如,在某些情况下,可以通过定义同构映射来将一种复杂的数据结构转换为另一种更高效的数据结构,从而提高程序的执行效率。这种转换保持了数据结构的本质信息不变,但优化了存储和访问方式。

自同构的具体应用

1. 群论中的自同构群

在群论中,自同构群是一个重要的概念。对于一个群 G G G,其自同构群 A u t ( G ) Aut(G) Aut(G)包含了所有将 G G G映射到其自身的同构映射。自同构群在研究群的性质、对称性以及分类时起着关键作用。例如,通过研究一个群的自同构群,可以了解该群的内部结构和对称性质,进而对其进行更深入的分类和研究。

2. 几何学中的自同构变换

在几何学中,自同构变换描述了图形或空间中的对称性。例如,在二维平面上,旋转、反射和平移等操作都是自同构变换的例子。这些变换将图形映射到其自身,同时保持图形的形状和大小不变(平移可能改变位置但不改变形状和大小)。自同构变换在图形的对称性分析、几何变换以及图像处理等领域有着广泛的应用。

3. 物理学中的自同构变换

在物理学中,自同构变换也扮演着重要角色。例如,在量子力学中,波函数的相位变换就是一种自同构变换。这种变换不改变波函数的物理意义(如概率分布),但可以改变波函数的表示形式。此外,在相对论中,洛伦兹变换作为一种特殊的自同构变换被用于描述不同惯性参考系之间的变换关系。

综上所述,同构和自同构在代数学、图论、程序设计、几何学以及物理学等多个领域都有着广泛的应用。这些应用不仅深化了我们对数学和物理世界的理解,还推动了相关领域的技术发展和创新。

参考文献

1.文心一言,chatgpt
2.《近世代数》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值