Crashing Robots POJ-2632 结题报告

本文介绍了一个典型的机器人路径模拟问题——避免碰撞。通过定义机器人的初始位置、方向及一系列指令,确保机器人在限定区域内移动时不会发生碰撞。文章提供了一种解决方案,采用结构化的数据存储方式和详细的逻辑判断来实现。

POJ-2632

Crashing Robots
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 11677 Accepted: 4952

Description

In a modernized warehouse, robots are used to fetch the goods. Careful planning is needed to ensure that the robots reach their destinations without crashing into each other. Of course, all warehouses are rectangular, and all robots occupy a circular floor space with a diameter of 1 meter. Assume there are N robots, numbered from 1 through N. You will get to know the position and orientation of each robot, and all the instructions, which are carefully (and mindlessly) followed by the robots. Instructions are processed in the order they come. No two robots move simultaneously; a robot always completes its move before the next one starts moving. 
A robot crashes with a wall if it attempts to move outside the area of the warehouse, and two robots crash with each other if they ever try to occupy the same spot.

Input

The first line of input is K, the number of test cases. Each test case starts with one line consisting of two integers, 1 <= A, B <= 100, giving the size of the warehouse in meters. A is the length in the EW-direction, and B in the NS-direction. 
The second line contains two integers, 1 <= N, M <= 100, denoting the numbers of robots and instructions respectively. 
Then follow N lines with two integers, 1 <= Xi <= A, 1 <= Yi <= B and one letter (N, S, E or W), giving the starting position and direction of each robot, in order from 1 through N. No two robots start at the same position. 
 
Figure 1: The starting positions of the robots in the sample warehouse

Finally there are M lines, giving the instructions in sequential order. 
An instruction has the following format: 
< robot #> < action> < repeat> 
Where is one of 
  • L: turn left 90 degrees, 
  • R: turn right 90 degrees, or 
  • F: move forward one meter,

and 1 <= < repeat> <= 100 is the number of times the robot should perform this single move.

Output

Output one line for each test case: 
  • Robot i crashes into the wall, if robot i crashes into a wall. (A robot crashes into a wall if Xi = 0, Xi = A + 1, Yi = 0 or Yi = B + 1.) 
  • Robot i crashes into robot j, if robots i and j crash, and i is the moving robot. 
  • OK, if no crashing occurs.

Only the first crash is to be reported.

Sample Input

4
5 4
2 2
1 1 E
5 4 W
1 F 7
2 F 7
5 4
2 4
1 1 E
5 4 W
1 F 3
2 F 1
1 L 1
1 F 3
5 4
2 2
1 1 E
5 4 W
1 L 96
1 F 2
5 4
2 3
1 1 E
5 4 W
1 F 4
1 L 1
1 F 20

Sample Output

Robot 1 crashes into the wall
Robot 1 crashes into robot 2
OK
Robot 1 crashes into robot 2

Source


解题思路:

    明显的模拟题,输入输出稍有点复杂,将四个方向抽象成四个坐标(1,0)(-1,0)(0,1)(0,-1)

然后利用模拟的思想对题目进行求解:

#include <cstdio>  
#include <iostream>  
#include <cstring>  
using namespace std;  
typedef struct node  
{  
    int x,y,dir;  
}robit;  
robit r[110];  
bool s[110][110];  
int dir[4][2]={{1,0},{0,1},{-1,0},{0,-1}};  
int a,b,n,m;  
int num[110],rep[110];  
char act[110];  
bool judge(int x,int y)  
{  
    if(x<1||x>a||y<1||y>b)  
      return true;  
    return false;  
}  
void solve()  
{  
    int x,y;  
    for(int i=1;i<=m;i++)  
    {  
        bool flag=true;  
        if(act[i]=='F')  
        {  
            s[r[num[i]].x][r[num[i]].y]=false;  
            while(rep[i]--)  
            {  
                x=r[num[i]].x+dir[r[num[i]].dir][0];  
                y=r[num[i]].y+dir[r[num[i]].dir][1];  
                if(judge(x,y))  
                {  
                    printf("Robot %d crashes into the wall\n",num[i]);  
                    flag=false;  
                    break;  
                }  
                if(s[x][y])  
                {  
                    int k;  
                    for(k=1;k<=n;k++)  
                      if(r[k].x==x&&r[k].y==y) break;  
                    printf("Robot %d crashes into robot %d\n",num[i],k);  
                    flag=false;  
                    break;  
                }  
                r[num[i]].x=x;  
                r[num[i]].y=y;  
                r[num[i]].dir=r[num[i]].dir;  
            }  
            s[x][y]=true;  
        }  
        rep[i]%=4;  
        if(act[i]=='R')  
          while(rep[i]--)  
          {  
              int mov=r[num[i]].dir-1;  
              if(mov==-1)  mov=3;  
              r[num[i]].dir=mov;  
          }  
        if(act[i]=='L')  
          while(rep[i]--)  
          {  
              int mov=r[num[i]].dir+1;  
              if(mov==4)  mov=0;  
              r[num[i]].dir=mov;  
          }  
          if(!flag) break;  
          if(i==m) printf("OK\n");  
    }  
}  
int main()  
{  
    int t;  
    scanf("%d",&t);  
    while(t--)  
    {  
        char ch;  
        memset(s,0,sizeof(s));  
        scanf("%d%d",&a,&b);  
        scanf("%d%d",&n,&m);  
        for(int i=1;i<=n;i++)  
        {  
            cin>>r[i].x>>r[i].y>>ch;  
            s[r[i].x][r[i].y]=true;  
            if(ch=='E') r[i].dir=0;  
            if(ch=='N') r[i].dir=1;  
            if(ch=='W') r[i].dir=2;  
            if(ch=='S') r[i].dir=3;  
        }  
        for(int i=1;i<=m;i++)  
          cin>>num[i]>>act[i]>>rep[i];  
        solve();  
    }  
    return 0;  
}

【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)内容概要:本文介绍了基于蒙特卡洛和拉格朗日方法的电动汽车充电站有序充电调度优化方案,重点在于采用分散式优化策略应对分时电价机制下的充电需求管理。通过构建数学模型,结合不确定性因素如用户充电行为和电网负荷波动,利用蒙特卡洛模拟生成大量场景,并运用拉格朗日松弛法对复杂问题进行分解求解,从而实现全局最优或近似最优的充电调度计划。该方法有效降低了电网峰值负荷压力,提升了充电站运营效率与经济效益,同时兼顾用户充电便利性。 适合人群:具备一定电力系统、优化算法和Matlab编程基础的高校研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。 使用场景及目标:①应用于电动汽车充电站的日常运营管理,优化充电负荷分布;②服务于城市智能交通系统规划,提升电网与交通系统的协同水平;③作为学术研究案例,用于验证分散式优化算法在复杂能源系统中的有效性。 阅读建议:建议读者结合Matlab代码实现部分,深入理解蒙特卡洛模拟与拉格朗日松弛法的具体实施步骤,重点关注场景生成、约束处理与迭代收敛过程,以便在实际项目中灵活应用与改进。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值