sklearn文本特征预处理2:Similarity, 聚类, LDA, word2vec

接上一篇<sklearn文本特征预处理1: WordPunctTokenizer, CountVectorizer, TF-IDF>

五. Similarity特征

# 余弦相似度
from sklearn.metrics.pairwise import cosine_similarity

similarity_matrix = cosine_similarity(tv_matrix)
similarity_df = pd.DataFrame(similarity_matrix)
similarity_df

在这里插入图片描述

六. 聚类特征

from sklearn.cluster import KMeans

km = KMeans(n_clusters = 2)
km.fit_transform(similarity_df)
cluster_labels = km.labels_
cluster_labels = pd.DataFrame(cluster_labels, columns=['ClusterLabel'])
pd.concat(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值