题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=2546
中文题目,不解释。
解题思路:
思路1:
因为题目给的数据是比较小的,所以可以想一些比较暴力的方法。
初始的时候,剩余的钱是 m。
经过第 1道菜之后,剩余的钱可能是m也可能是 m-c[1]。
经过第2道菜之后,剩余的钱可能是m,m-c[1],m-c[2],m-c[1]-c[2];
从这里可以看出来经过第 i道菜之后,可能出现的剩余的钱数是建立在前i-1道菜上的。
那么我们只需要将每次出现的剩余的钱数进行标记,到第i道菜的时候,将产生的新的剩余的钱数进行标记。
最后找出出现的钱数的最小值,就是最终的答案。
该方法比较简单易懂,实现起来也是比较快的。
思路2:
背包思想。
但是在背包之前需要考虑下,该怎么去背包。
由于卡上的钱必须大于等于5的时候才能去买东西,那么我们可以采取一种贪心策略。
就是先留下5快钱不用,最后去买最贵的那道菜。
那么背包容量现在就是m-5了,需要进行背包的物品应该除以最贵的那道菜。
状态转移方程:
dp[j]=max(dp[j-c[i]]+c[i],dp[j]);
dp[j]表示背包容量为j能获得的最大价值。
思路1源代码:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<algorithm>
#include<iostream>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long LL;
const double eps=1e-8;
int n,m;
int c[1005];
int boo[1005]; //表示某种价值出现是可能的
int main()
{
freopen("in.txt","r",stdin);
int i,j,k,t;
while(scanf("%d",&n)==1 && n)
{
for(i=0;i<n;i++)
scanf("%d",&c[i]);
sort(c,c+n);
scanf("%d",&m);
memset(boo,0,sizeof(boo));
boo[m]=1;
int Min=m;
for(i=0;i<n;i++)
{
//这个地方的j循环必须是从小到大的,因为只能买一次
for(j=5;j<=m;j++)
{
if(boo[j])
{
if(j-c[i]>=5) boo[j-c[i]]=1;
if(j-c[i]<Min) Min=j-c[i];
}
}
}
printf("%d\n",Min);
}
return 0;
}
思路2源代码:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<algorithm>
#include<iostream>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long LL;
const double eps=1e-8;
int dp[1005]; //容量为j所能包含的最大值
int c[1005];
int n,m;
int main()
{
freopen("in.txt","r",stdin);
int i,j;
while(scanf("%d",&n)==1 && n)
{
memset(c,0,sizeof(c));
for(i=1;i<=n;i++)
scanf("%d",&c[i]);
sort(c+1,c+n+1);
scanf("%d",&m);
if(m<5)
{
printf("%d\n",m);
continue;
}
memset(dp,0,sizeof(dp));
//留下5块钱去买最贵的东西
m=m-5;
//将n-1个物品进行容量为m背包,计算最大能获得的价值
//物品的价值和消费是一样的
for(i=1;i<n;i++)
{
for(j=m;j>=c[i];j--)
dp[j]=max(dp[j-c[i]]+c[i],dp[j]);
}
printf("%d\n",m-dp[m]+5-c[n]);
}
return 0;
}