排序算法总结 (C语言版)

一 理论

1、稳定排序和非稳定排序
简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就说这种排序方法是稳定的。反之,就是非稳定的。
 比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5
则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4,a2,a3,a5就不是稳定的了。

2、内排序和外排序

 在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。

3、算法的时间复杂度和空间复杂度

 所谓算法的时间复杂度,是指执行算法所需要的计算工作量。
 
一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。

 

二 排序算法介绍
================================================
 
功能:选择排序
 输入:数组名称(也就是数组首地址)、数组中元素个数
====================================================
算法思想简单描述:

     在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。 

     选择排序是不稳定的。算法复杂度O(n2)--[n的平方]
=====================================================

  1. void select_sort(int *x, int n)  
  2. {  
  3.  int i, j, min, t;  
  4.  for (i=0; i<n-1; i++) /*要选择的次数:0~n-2共n-1次*/  
  5.  {  
  6.   min = i; /*假设当前下标为i的数最小,比较后再调整*/  
  7.   for (j=i+1; j<n; j++)/*循环找出最小的数的下标是哪个*/  
  8.   {  
  9.    if (*(x+j) < *(x+min))  
  10.    {     
  11.     min = j; /*如果后面的数比前面的小,则记下它的下标*/  
  12.    }  
  13.   }    
  14.     
  15.   if (min != i) /*如果min在循环中改变了,就需要交换数据*/  
  16.   {  
  17.    t = *(x+i);  
  18.    *(x+i) = *(x+min);  
  19.    *(x+min) = t;  
  20.   }  
  21.  }  
  22. }  
void select_sort(int *x, int n)
{
 int i, j, min, t;
 for (i=0; i<n-1; i++) /*要选择的次数:0~n-2共n-1次*/
 {
  min = i; /*假设当前下标为i的数最小,比较后再调整*/
  for (j=i+1; j<n; j++)/*循环找出最小的数的下标是哪个*/
  {
   if (*(x+j) < *(x+min))
   {   
    min = j; /*如果后面的数比前面的小,则记下它的下标*/
   }
  }  
  
  if (min != i) /*如果min在循环中改变了,就需要交换数据*/
  {
   t = *(x+i);
   *(x+i) = *(x+min);
   *(x+min) = t;
  }
 }
}


 

================================================
 
功能:直接插入排序
 输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
算法思想简单描述:

     在要排序的一组数中,假设前面(n-1) [n>=2]个数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数 也是排好顺序的。如此反复循环,直到全部排好顺序。
 
   直接插入排序是稳定的。算法时间复杂度O(n2)--[n的平方]
=====================================================

  1. void insert_sort(int *x, int n)  
  2. {  
  3.  int i, j, t;  
  4.  for (i=1; i<n; i++) /*要选择的次数:1~n-1共n-1次*/  
  5.  {  
  6.   /* 
  7.    暂存下标为i的数。注意:下标从1开始,原因就是开始时 
  8.    第一个数即下标为0的数,前面没有任何数,单单一个,认为 
  9.    它是排好顺序的。 
  10.   */  
  11.   t=*(x+i);  
  12.   for (j=i-1; j>=0 && t<*(x+j); j--) /*注意:j=i-1,j--,这里就是下标为i的数,在它前面有序列中找插入位置。*/  
  13.   {  
  14.    *(x+j+1) = *(x+j); /*如果满足条件就往后挪。最坏的情况就是t比下标为0的数都小,它要放在最前面,j==-1,退出循环*/  
  15.   }  
  16.   *(x+j+1) = t; /*找到下标为i的数的放置位置*/  
  17.  }  
  18. }  
void insert_sort(int *x, int n)
{
 int i, j, t;
 for (i=1; i<n; i++) /*要选择的次数:1~n-1共n-1次*/
 {
  /*
   暂存下标为i的数。注意:下标从1开始,原因就是开始时
   第一个数即下标为0的数,前面没有任何数,单单一个,认为
   它是排好顺序的。
  */
  t=*(x+i);
  for (j=i-1; j>=0 && t<*(x+j); j--) /*注意:j=i-1,j--,这里就是下标为i的数,在它前面有序列中找插入位置。*/
  {
   *(x+j+1) = *(x+j); /*如果满足条件就往后挪。最坏的情况就是t比下标为0的数都小,它要放在最前面,j==-1,退出循环*/
  }
  *(x+j+1) = t; /*找到下标为i的数的放置位置*/
 }
}


 

================================================
 
功能:冒泡排序
 输入:数组名称(也就是数组首地址)、数组中元素个数
================================================

算法思想简单描述:

     在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较 小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
    
下面是一种改进的冒泡算法,它记录了每一遍扫描后最后下沉数的位置k,这样可以减少外层循环扫描的次数。

 冒泡排序是稳定的。算法时间复杂度O(n2)--[n的平方]
=====================================================

  1. void BubbleSort(int *array,int n)    
  2. {    
  3.     int temp;    
  4.     for (int i=n-1;i>0;i--)    
  5.     {    
  6.         for (int j=0;j<i;j++)    
  7.         {    
  8.             if (*(array+j)>*(array+j+1))    
  9.             {    
  10.                 temp=*(array+j);    
  11.                 *(array+j)=*(array+j+1);    
  12.                 *(array+j+1)=temp;    
  13.             }    
  14.         }    
  15.     }    
  16. }  
void BubbleSort(int *array,int n)  
{  
    int temp;  
    for (int i=n-1;i>0;i--)  
    {  
        for (int j=0;j<i;j++)  
        {  
            if (*(array+j)>*(array+j+1))  
            {  
                temp=*(array+j);  
                *(array+j)=*(array+j+1);  
                *(array+j+1)=temp;  
            }  
        }  
    }  
}
  1.  <font color="black"><span style="font-family: 宋体;"><span style="color: black;">================================================  
  2.  </span><span style="font-family: 宋体;"><span style="color: black;">功能:</span><strong><span style="color: blue;">希尔排序</span></strong></span><strong><span style="color: blue;">  
  3. </span></strong><span style="color: black;"> </span><span style="color: black;"><span style="font-family: 宋体;">输入:<strong>数组名称(也就是数组首地址)、数组中元素个数</strong></span></span><strong><span style="color: black;">  
  4. </span></strong><span style="color: black;">================================================</span></span></font>  
 ================================================
 功能:希尔排序
 输入:数组名称(也就是数组首地址)、数组中元素个数
================================================

希尔排序算法思想简单描述:
    
在直接插入排序算法中,每次插入一个数,使有序列只增加1个节点,并且对插入下一个数没有提供任何帮助。如果比较相隔较远距离(称为增量)的数,使得数移动时能跨过多个元素,则进行一次比较就可能消除多个元素交换。D.L.shell1959年在以他名字命名的排序算法中实现 了这一思想。

算法先将要排序的一组数按某个增量d分成若干组,每组中 记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量 对它进行,在每组中再进行排序。当增量减到1时,整个要排序的数被分成 一组,排序完成。
 
    
下面的函数是一个希尔排序算法的一个实现,初次取序列的一半为增量,以后每次减半,直到增量为1

    

希尔排序是不稳定的。
=====================================================

  1. void shell_sort(int *x, int n)  
  2. {  
  3.  int h, j, k, t;  
  4.  for (h=n/2; h>0; h=h/2) /*控制增量*/  
  5.  {  
  6.   for (j=h; j<n; j++) /*这个实际上就是上面的直接插入排序*/  
  7.   {  
  8.    t = *(x+j);  
  9.    for (k=j-h; (k>=0 && t<*(x+k)); k-=h)  
  10.    {  
  11.     *(x+k+h) = *(x+k);  
  12.    }  
  13.    *(x+k+h) = t;  
  14.   }  
  15.  }  
  16. }  
void shell_sort(int *x, int n)
{
 int h, j, k, t;
 for (h=n/2; h>0; h=h/2) /*控制增量*/
 {
  for (j=h; j<n; j++) /*这个实际上就是上面的直接插入排序*/
  {
   t = *(x+j);
   for (k=j-h; (k>=0 && t<*(x+k)); k-=h)
   {
    *(x+k+h) = *(x+k);
   }
   *(x+k+h) = t;
  }
 }
}


 

================================================
 
功能:快速排序
 输入:数组名称(也就是数组首地址)、数组中起止元素的下标
====================================================
算法思想简单描述:

     快速排序是对冒泡排序的一种本质改进。它的基本思想是通过一趟扫描后,使得排序序列的长度能大幅度地减少。在冒泡排序中,一次扫描只能确保最大数值的数移到正确位置,而待排序序列的长度可能只 减少1。快速排序通过一趟扫描,就能确保某个数(以它为基准点吧) 的左边各数都比它小,右边各数都比它大。然后又用同样的方法处理 它左右两边的数,直到基准点的左右只有一个元素为止。 
   
 显然快速排序可以用递归实现,当然也可以用栈化解递归实现。下面的 函数是用递归实现的,有兴趣的朋友可以改成非递归的。

     快速排序是不稳定的。最理想情况算法时间复杂度O(nlog2n),最坏O(n2)
=====================================================

  1. void quick_sort(int *x, int low, int high)  
  2. {  
  3.  int i, j, t;  
  4.  if (low < high) /*要排序的元素起止下标,保证小的放在左边,大的放在右边。这里以下标为low的元素为基准点*/  
  5.  {  
  6.   i = low;  
  7.   j = high;  
  8.   t = *(x+low); /*暂存基准点的数*/  
  9.   while (i<j) /*循环扫描*/  
  10.   {  
  11.    while (i<j && *(x+j)>t) /*在右边的只要比基准点大仍放在右边*/  
  12.    {  
  13.     j--; /*前移一个位置*/  
  14.    }  
  15.    if (i<j)   
  16.    {  
  17.     *(x+i) = *(x+j); /*上面的循环退出:即出现比基准点小的数,替换基准点的数*/  
  18.     i++; /*后移一个位置,并以此为基准点*/  
  19.    }  
  20.    while (i<j && *(x+i)<=t) /*在左边的只要小于等于基准点仍放在左边*/  
  21.    {  
  22.     i++; /*后移一个位置*/  
  23.    }  
  24.    if (i<j)  
  25.    {  
  26.     *(x+j) = *(x+i); /*上面的循环退出:即出现比基准点大的数,放到右边*/  
  27.     j--; /*前移一个位置*/  
  28.    }  
  29.   }  
  30.   *(x+i) = t; /*一遍扫描完后,放到适当位置*/  
  31.   quick_sort(x,low,i-1);  /*对基准点左边的数再执行快速排序*/  
  32.   quick_sort(x,i+1,high);  /*对基准点右边的数再执行快速排序*/  
  33.  }  
  34. }  
void quick_sort(int *x, int low, int high)
{
 int i, j, t;
 if (low < high) /*要排序的元素起止下标,保证小的放在左边,大的放在右边。这里以下标为low的元素为基准点*/
 {
  i = low;
  j = high;
  t = *(x+low); /*暂存基准点的数*/
  while (i<j) /*循环扫描*/
  {
   while (i<j && *(x+j)>t) /*在右边的只要比基准点大仍放在右边*/
   {
    j--; /*前移一个位置*/
   }
   if (i<j) 
   {
    *(x+i) = *(x+j); /*上面的循环退出:即出现比基准点小的数,替换基准点的数*/
    i++; /*后移一个位置,并以此为基准点*/
   }
   while (i<j && *(x+i)<=t) /*在左边的只要小于等于基准点仍放在左边*/
   {
    i++; /*后移一个位置*/
   }
   if (i<j)
   {
    *(x+j) = *(x+i); /*上面的循环退出:即出现比基准点大的数,放到右边*/
    j--; /*前移一个位置*/
   }
  }
  *(x+i) = t; /*一遍扫描完后,放到适当位置*/
  quick_sort(x,low,i-1);  /*对基准点左边的数再执行快速排序*/
  quick_sort(x,i+1,high);  /*对基准点右边的数再执行快速排序*/
 }
}

================================================
 
功能:堆排序
 输入:数组名称(也就是数组首地址)、数组中元素个数
====================================================
算法思想简单描述:

    堆排序是一种树形选择排序,是对直接选择排序的有效改进。 堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1(i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。

     由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储顺序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。

     从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素
 
交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数
 
实现排序的函数。

     堆排序是不稳定的。算法时间复杂度O(nlog2n)

====================================================

 功能:渗透建堆
 输入数组名称(也就是数组首地址)、参与建堆元素的个数、从第几个元素开始
====================================================

  1. void sift(int *x, int n, int s)  
  2. {  
  3.  int t, k, j;  
  4.  t = *(x+s); /*暂存开始元素*/  
  5.  k = s;  /*开始元素下标*/  
  6.  j = 2*k + 1; /*右子树元素下标*/  
  7.  while (j<n)  
  8.  {  
  9.   if (j<n-1 && *(x+j) < *(x+j+1))/*判断是否满足堆的条件:满足就继续下一轮比较,否则调整。*/  
  10.   {  
  11.    j++;  
  12.   }  
  13.   if (t<*(x+j)) /*调整*/  
  14.   {  
  15.    *(x+k) = *(x+j);  
  16.    k = j; /*调整后,开始元素也随之调整*/  
  17.    j = 2*k + 1;  
  18.   }  
  19.   else /*没有需要调整了,已经是个堆了,退出循环。*/  
  20.   {  
  21.    break;  
  22.   }  
  23.  }  
  24.  *(x+k) = t; /*开始元素放到它正确位置*/  
  25. }  
void sift(int *x, int n, int s)
{
 int t, k, j;
 t = *(x+s); /*暂存开始元素*/
 k = s;  /*开始元素下标*/
 j = 2*k + 1; /*右子树元素下标*/
 while (j<n)
 {
  if (j<n-1 && *(x+j) < *(x+j+1))/*判断是否满足堆的条件:满足就继续下一轮比较,否则调整。*/
  {
   j++;
  }
  if (t<*(x+j)) /*调整*/
  {
   *(x+k) = *(x+j);
   k = j; /*调整后,开始元素也随之调整*/
   j = 2*k + 1;
  }
  else /*没有需要调整了,已经是个堆了,退出循环。*/
  {
   break;
  }
 }
 *(x+k) = t; /*开始元素放到它正确位置*/
}


 

====================================================
 
功能:堆排序
 输入:数组名称(也就是数组首地址)、数组中元素个数
====================================================

  1. void heap_sort(int *x, int n)  
  2. {  
  3.  int i, k, t;  
  4.  int *p;  
  5.  for (i=n/2-1; i>=0; i--)  
  6.  {  
  7.   sift(x,n,i); /*初始建堆*/  
  8.  }   
  9.  for (k=n-1; k>=1; k--)  
  10.  {  
  11.   t = *(x+0); /*堆顶放到最后*/  
  12.   *(x+0) = *(x+k);  
  13.   *(x+k) = t;  
  14.   sift(x,k,0); /*剩下的数再建堆*/   
  15.  }  
  16. }  
  17. void main()  
  18. {   
  19.  #define MAX 4  
  20.  int *p, i, a[MAX];  
  21.  /*录入测试数据*/  
  22.  p = a;  
  23.  printf("Input %d number for sorting :\n",MAX);  
  24.  for (i=0; i<MAX; i++)  
  25.  {  
  26.   scanf("%d",p++);  
  27.  }  
  28.  printf("\n");  
  29.  /*测试选择排序*/  
  30.  p = a;  
  31.  select_sort(p,MAX);  
  32.  /**/  
  33.  /*测试直接插入排序*/  
  34.  p = a;  
  35.  insert_sort(p,MAX);  
  36.  /*测试冒泡排序*/  
  37.  p = a;  
  38.  insert_sort(p,MAX);  
  39.  /*测试快速排序*/  
  40.  p = a;  
  41.  quick_sort(p,0,MAX-1);  
  42.  /*测试堆排序*/  
  43.  p = a;  
  44.  heap_sort(p,MAX);  
  45.  for (p=a, i=0; i<MAX; i++)  
  46.  {  
  47.   printf("%d ",*p++);  
  48.  }  
  49.    
  50.  printf("\n");  
  51.  system("pause");  
  52. }  
void heap_sort(int *x, int n)
{
 int i, k, t;
 int *p;
 for (i=n/2-1; i>=0; i--)
 {
  sift(x,n,i); /*初始建堆*/
 } 
 for (k=n-1; k>=1; k--)
 {
  t = *(x+0); /*堆顶放到最后*/
  *(x+0) = *(x+k);
  *(x+k) = t;
  sift(x,k,0); /*剩下的数再建堆*/ 
 }
}
void main()
{ 
 #define MAX 4
 int *p, i, a[MAX];
 /*录入测试数据*/
 p = a;
 printf("Input %d number for sorting :\n",MAX);
 for (i=0; i<MAX; i++)
 {
  scanf("%d",p++);
 }
 printf("\n");
 /*测试选择排序*/
 p = a;
 select_sort(p,MAX);
 /**/
 /*测试直接插入排序*/
 p = a;
 insert_sort(p,MAX);
 /*测试冒泡排序*/
 p = a;
 insert_sort(p,MAX);
 /*测试快速排序*/
 p = a;
 quick_sort(p,0,MAX-1);
 /*测试堆排序*/
 p = a;
 heap_sort(p,MAX);
 for (p=a, i=0; i<MAX; i++)
 {
  printf("%d ",*p++);
 }
 
 printf("\n");
 system("pause");
}

三 总结

名称

 复杂度 说明 备注
 冒泡排序
Bubble Sort

O(N*N)

 

将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮

 
 

插入排序

Insertion sort

 

O(N*N)

 

逐一取出元素,在已经排序的元素序列中从后向前扫描,放到适当的位置

 

起初,已经排序的元素序列为空

 

选择排序

 

O(N*N)

 

首先在未排序序列中找到最小元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。以此递归。

 
 

快速排序

Quick Sort

 

O(n *log2(n))

 

先选择中间值,然后把比它小的放在左边,大的放在右边(具体的实现是从两边找,找到一对后交换)。然后对两边分别使用这个过程(递归)。

 
 

堆排序Heap Sort

 

O(n *log2(n))

 

利用堆(heaps)这种数据结构来构造的一种排序算法。堆是一个近似完全二叉树结构,并同时满足堆属性:即子节点的键值或索引总是小于(或者大于)它的父节点。

近似完全二叉树

 

希尔排序

SHELL

 

O(n1+)

0<£<1

 

选择一个步长(Step) ,然后按间隔为步长的单元进行排序.递归,步长逐渐变小,直至为1.

 
 

箱排序
Bin Sort

 

O(n)

 

设置若干个箱子,把关键字等于 k 的记录全都装入到第 k 个箱子里 ( 分配 ) ,然后按序号依次将各非空的箱子首尾连接起来 (收集 )。

 

分配排序的一种:通过 " 分配 " 和 "收集 "过程来实现排序。

 

桶排序

Bucket Sort

 

O(n)

 

桶排序的思想是把 [0 , 1) 划分为 n个大小相同的子区间,每一子区间是一个桶。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值