我还在坚持买钱币~你呢?

46deb32e8f2ecfba86c9c47f795f70bf.png

大环境很惨,什么行业都惨。

泉友甚至不少想退圈了~

我一直都在按部就班的买,不过我这个能力也没钱买什么大钱,我连买个雍正都犹豫~

我自己更多是看颜值,版本次之~

我没有什么专攻的板块,就是看到什么喜欢了就买。

为什么一直买?

其实也都是一些闲钱,一些私房钱,也没什么地方可以投。

08356fd4d548b1e2d75879d7aacb707b.jpeg

你要说投到股市??我只能说呵呵呵呵呵呵呵呵呵呵呵了

300724f121b252b0ad772d9d0223d3dd.jpeg

楼市?先不说楼市咋样,我这点儿私房钱买个厕所都不够首付款。

238300e9fe9dcf5bdde7727a931e8365.jpeg

黄金不错,只是这个价格我也买不动了~

钱肯定是越来越不值钱,那没啥可买的,放余额宝也没啥收入。还不如“及时行乐”买点儿自己喜欢的东西。

不抽烟,不酗酒,没啥不良癖好,就喜欢玩儿点儿铜钱,一包烟一瓶酒的钱就可以买个自己喜欢的小铜钱,挺好的。

45bca3be3c758321fa331566839c5d99.jpeg

我也不是什么币圈大神,就是个打工仔,小屌丝。

没什么大的志向大的抱负,手里也没大珍,也没想过大珍,就想着,人到中年,有点兴趣爱好而已。

看看历史故事,看看钱币的故事,了解了解历史,摸一摸千年前的老物件,甚至有种穿越感。

ca1ed9a803869866b1aeaf90f765953f.jpeg

古钱币,已经不仅仅用”钱“来衡量价值了,有他的艺术价值,历史价值,当然,对我这种打工仔来说,喜欢,就够了~

一只老虎走在路上看到左右两只羊,它一口咬死了左边的羊然后吃了起来~

路人问老虎:你为啥吃左边的,不吃右边的呢?

老虎瞥他一眼答:俺愿意,你管我呢?

8482690c51a3e20283ab3c19a9fc8968.jpeg

推荐阅读:

《古币杂谈:康熙满汉~同福临东江》

《古币杂谈:康熙满汉~宣原苏蓟昌》

《古币杂谈:清十二帝 完结》

《古币杂谈:基础知识之面文 地章 穿 缘 边 郭》

《古币杂谈:基础知识之 进,退,仰,俯,昂,降》

《古币杂谈:基础知识之 广穿、狭穿、花穿、阔缘、细缘、广郭、细郭、隐郭(阴郭)、反郭、含圆郭》

《两宋风云:宋太祖 赵匡胤~宋元通宝》

《人到中年,尽量让自己活的舒心一些~》

《古币杂谈:古代货币概况》

《古币杂谈:楚国鬼脸钱》

《古币杂谈:先秦 燕明刀》

《古币杂谈:贝币》

《古币杂谈:秦汉半两》

《古币杂谈:最近拍的一组靓照》 

《古币杂谈:戏说西夏~》

《古币杂谈:金朝与南北宋》

内容概要:本文档《opencv高频面试题.docx》涵盖了OpenCV的基础概念、图像处理操作、特征提取与匹配、目标检测与机器学习、实际编程题、性能优化以及进阶问题。首先介绍了OpenCV作为开源计算机视觉库,支持图像/视频处理、目标检测、机器学习等领域,应用于安防、自动驾驶、医学影像、AR/VR等方面。接着详细讲述了图像的存储格式(如Mat类)、通道的概念及其转换方法。在图像处理部分,讲解了图像灰度化、二值化、边缘检测等技术。特征提取方面,对比了Harris和Shi-Tomasi角点检测算法,以及SIFT、SURF、ORB的特征提取原理和优缺点。目标检测部分介绍了Haar级联检测原理,并阐述了如何调用深度学习模型进行目标检测。文档还提供了几个实际编程题示例,如读取并显示图像、图像旋转、绘制矩形框并保存等。最后,探讨了性能优化的方法,如使用cv2.UMat(GPU加速)、减少循环等,以及相机标定、光流等进阶问题。 适合人群:对计算机视觉有一定兴趣,具备一定编程基础的学习者或从业者。 使用场景及目标:①帮助学习者掌握OpenCV的基本概念和技术;②为面试准备提供参考;③为实际项目开发提供技术指导。 阅读建议:由于内容涵盖广泛,建议读者根据自身需求有选择地深入学习相关章节,并结合实际编程练习加深理解。
参考资源链接:[Python实现Canny边缘检测与Hough圆心定位详解](https://wenku.csdn.net/doc/6401ad24cce7214c316ee741?utm_source=wenku_answer2doc_content) 要实现精确的钱币定位,首先需要利用Canny边缘检测算法来识别图像中的边缘。Canny算法能够通过高斯滤波、梯度计算、非极大值抑制和双阈值检测,有效地提取出图像中的边缘信息。 在Python中,可以使用OpenCV库来实现Canny算法。以下是使用OpenCV进行Canny边缘检测的基本步骤: 1. 对输入图像应用高斯滤波,以平滑图像并减少噪声。 2. 计算图像的梯度图,这通常涉及到使用Sobel算子来获得x和y方向的梯度。 3. 应用双阈值技术,通常通过滞后阈值法来确定强边缘和弱边缘,其中强边缘代表明显的边界,而弱边缘可能属于目标对象的边界。 4. 使用非极大值抑制来细化边缘,消除孤立的边缘点。 在边缘检测后,应用Hough变换来识别图像中的圆形物体。Hough变换是一种在参数空间检测特定形状的技术,对于圆形,它需要在三个维度上检测:x和y坐标表示圆心位置,r表示圆的半径。实现Hough变换的步骤如下: 1. 为每个边缘点计算可能的圆参数。 2. 在Hough空间中对这些参数进行投票,根据投票结果确定最可能的圆心和半径。 3. 根据累积的投票数,选择投票数最多的峰值作为最终的圆心和半径。 在OpenCV中,可以使用`cv2.HoughCircles`函数直接实现圆形检测,该函数封装了Hough变换的整个过程,并返回检测到的圆心坐标和半径。 结合Canny边缘检测和Hough变换,你可以构建一个强大的图像处理流程来精确定位图像中的钱币。务必注意调整Canny算法的参数,如高斯核大小、滞后阈值等,以适应不同的图像条件。同样,Hough变换的参数(如圆心间隔、最小半径和最大半径)也需要根据实际情况进行微调,以确保准确地找到钱币的位置。通过实践和调整这些参数,你将能够有效地实现一个钱币定位系统。 参考资源链接:[Python实现Canny边缘检测与Hough圆心定位详解](https://wenku.csdn.net/doc/6401ad24cce7214c316ee741?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值