MLOps专栏文章汇总

MLOps 技术栈架构

MLOps stack architecture
MLOps stack architecture

MLOps

无代码与以数据为中心的 AI 平台

数据版本管理

捕获数据版本以重现、跟踪和记录您的 ML 模型血缘。

DVC

特征存储

AutoML

NNI

模型实验跟踪

跟踪有关实验的重要信息,如参数、指标和模型。

MLflow

机器学习流水线(Pipeline)

自动化ML实验的步骤。调度流水线运行,以根据新数据重新训练模型。

模型可视化

模型服务

创建API端点并使用模型进行预测。

BentoML

Seldon

  • 使用 Seldon Core 服务模型
    • 什么是模型服务(通过 API 与您的模型交互、将模型部署到云端或边缘设备、轻松扩展模型以满足用户需求)、Seldon Core简介、Seldon Core 安装、Seldon 如何为模型服务、使用自定义 Docker 镜像服务、Seldon 适合你吗
  • 使用 Seldon Alibi 进行模型监控
    • 模型监控如何工作(数据漂移、异常值、偏见)、Alibi Detect 简介、监控模型(部署图像分类器、部署漂移检测器)、从 Alibi 中获取指标、Alibi 适合你吗?

可解释机器学习

模型监控

模型监控概述

  • 什么是模型监控?(Valohai)
    • 为什么要监控模型、 机器学习模型监控清单(数据分布变化、性能改变、健康指标/运营指标、数据完整性、分段性能、偏见/公平)、在 Valohai 中如何监控模型(存储指标、在 UI 中可视化指标)
  • 机器学习模型监控清单
    • 服务健康、数据质量和完整性、数据和目标漂移、模型性能、分段性能表现、偏见/公平、异常值
  • 模型监控:定义、重要性和最佳实践(AI Multiple)
    • 什么是模型监控、为什么模型监控很重要、ML 模型随时间退化的原因(不断变化的环境、更改业务数据)、 模型监控变量(真实值与预测值检查、数据分布变化、无错误数据、公平、运行指标)
  • 机器学习模型监控(Aporia)
    • 机器学习模型监控(什么是模型监控、 如何监控机器学习(数据漂移检测、数据完整性检测、概念漂移检测、数据偏差、异常))、 模型中的漂移检测(模型漂移、数据漂移(KS检验、PSI、Z-score)、概念漂移)、 机器学习性能监控(如何监控机器学习性能、如何提高模型性能)、机器学习模型管理、模型可解释性、机器学习实验跟踪、机器学习模型注册表
  • MLOps:模型监控
    • 模型监控背景、模型监控动机、 模型监控指标(稳定性指标、性能表现指标、运营指标)
  • 监控生产中的ML系统,您应该跟踪哪些指标?
    • 为什么需要ML监控、ML监控动机、模型监控金字塔(软件后端、数据、ML模型、业务或产品KPI)、 模型监控指标(ML系统健康监测、ML数据质量监控、ML模型质量监控、业务指标和KPI)、模型监控利益相关者、 模型监控难点

模型漂移

  • 机器学习中的概念漂移(Aporia)
    • 机器学习中的 漂移类型(概念漂移、预测漂移、标签漂移、特征漂移)、 概念漂移可以以不同的方式出现(突然漂移、逐渐漂移、递增的漂移、重复出现的概念)、 概念漂移的两种类型(虚拟的漂移、真正的漂移)、现实生活中的概念漂移、概念漂移的难点
  • 机器学习概念漂移检测方法(Aporia)
    • 统计方法(JS散度、KL散度、KS检验)、 统计过程控制方法(DDM/EDDM、CUMSUM及其变体PH)、 时间窗口分布方法(ADWIN、Paired Learners)、 上下文方法(树特征)、漂移检测实现工具
  • 如何检测和克服MLOps中的模型漂移
    • 模型漂移的类型(概念漂移、数据漂移)、 解决模型漂移、创建可持续的机器学习模型
  • 数据漂移、概念漂移以及如何监控它们(mona)
    • 什么是数据漂移、什么是概念漂移、 数据漂移和概念漂移的区别、什么时候应该关注概念漂移、 监控数据漂移和概念漂移的建议

模型监控数据类型

模型监控工具

  • ML 模型监控最佳工具
    • 如何比较 ML 模型监控工具(易于集成、灵活性和表现力、开销、监控功能、警报)、 ML 模型监控工具(Neptune、Arize、WhyLabs、Grafana+Prometheus、 Evidently(开源)、Qualdo、Fiddler、Amazon SageMaker Model Monitor、 Seldon Alibi Detect(开源)、Censius)
  • 一个精选的模型监控工具列表
    • Aporia、 Deepchecks(开源)、MLRun、 Evidently(开源)、WhyLabs
  • 机器学习模型监控工具:Evidently 与 Seldon Alibi 对比
    • 比较标准(兼容性、集成、能力) 、Evidently( 离线分析、实时监控)、Seldon Alibi Detect( 离线分析、实时监控

Evidently

Seldon Alibi Detect

人工智能系统(AI System)

向量数据库

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吃果冻不吐果冻皮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值