不管在生活上或工作上,我们经常对很多事物的处理或判断,都能经由理性的逻辑推演,并且细致的拆解成非常完整的执行步骤,所以很容易认为事情的处置是不困难的。但很高的比例在真正面对问题时,却做不到;其中最大的问题在「情绪」与「时效」。
「情绪」因素诸如压力、怠惰、畏缩……等,大家都能体会,反而「时效」是我们在思考处理的方法时,容易被忽略的因素。而且不论是我们自己做或交待部属该做的事,往往都因时效不及,实际上并未能理性的推演与细致的拆解执行,仍然落入用直觉、经验、单点的方式来做判断处理,原因何在?
一个近乎完美的决策判断,一定是经由越多方面、越多角度的数据资讯交叉比对,再依权重比例来决定的。而且这些资讯必须是最实时,交叉比对的速度也要非常快,否则瞬息之间环境情况又变了。
上述对于时效的要求,人是做不到的,因此,若能全面的将实时信息数字化,再利用电脑工具将这些数据,依人所设定的算法来运算比对,做出决策结果,就能达到上述的理想。
而且,环境一直在变化,人所设定的算法也要随环境变化而调整,然而人要重新设计算法时,同样需要耗费模拟与建构的时间,同样也是缓不济急。
所以,AI智能就是利用大数据以及深度学习算法,让电脑能依据环境的改变不断的学习调整,而由电脑本身实时做出判断。
这样才能做到「想得到,做得到」。
当然,AI智能的产出结果,有精准度高低等级的不同,就像人有小学、中学、大学程度智能一样。但是,当这些不是百分之百准确的AI智能,要被拿来运用时,往往会招致不愿改变的使用者,轻易的点出不准确的地方,而振振有词的拒绝使用。
这些拒绝使用的人,往往就是犯了前述那种「想得到,做不到」的人。他经常会说,我们会这样判断、那样判断,所以人来判断会比机器准!但是他们从不去想,实务上他有办法实时收集这么多数量、多角度的资料吗?有能力每次都不受情绪影响、坚持用专业纪律去执行专业判断吗?
真正的情况,可能AI智能准确度是90%,但是人来做顶多是70%。
AI智能虽不是完美,但时效性、准确性比人能做到的高,那该不该采用呢?答案当然很清楚。这是推动AI智能工具很重要的认知,推动者不要陷入必须百分百准确的盲点,而使用的人也不要祇是去批评AI智能工具的准确度,要先了解自己现有做法的不准度,这是非常重要的。
数字化、数位能力、物联网、大数据、AI智能……都是必走的方向,大家都应积极的去了解学习,并投入资源去建构运用。期望本文能帮助破除推进时,会面临技术能力外的人为心理盲点与阻力。