面试题11:数值的整数次方

本文介绍了一种使用递归实现的快速幂算法,该算法可在O(logn)的时间复杂度内计算浮点数的整数次幂,包括处理0的0次方和负指数的情况。文章详细解析了算法流程,并提供了C++代码实现。

题目描述

给定一个double类型的浮点数base和int类型的整数exponent。求base的exponent次方。

分析:

  1. 指数可能为负数和0,注意0的0次方要提醒输入错误;
  2. 用递归解法可以在O(logn)的复杂读求一个数的正数次方
  3. 用fabs(a,b)<1e-15(1e-6)比较浮点数是否相等

代码:

class Solution {
public:
    double Power(double base, int exponent) {
        if(fabs(base-0.0)<1e-6&&exponent<0)
            return 0.0;
        unsigned int absExponent=(unsigned int)(exponent);
        if(exponent<0)
            absExponent=(unsigned int)(-exponent);
        double res=myPower(base,absExponent);
        if(exponent<0)
            return 1.0/res;
        return res;
    }
    double myPower(double x,unsigned int n){        
        if(n==0) return 1.0;
        else if(n%2==0) return myPower(x*x,n/2);
        else return x*myPower(x,n-1);
    }
};

 

内容概要:本文介绍了一种基于倒谱预白化技术的轴承故障检测法,特别适用于变速工况下复杂背景噪声中的故障特征提取。通过带通滤波预处理信号后,采用倒谱预白化消除谐波干扰,再对信号进行平包络谱分析,从而有效增强故障冲击特征,实现对轴承早期故障的精准诊断。文中提供了完的Matlab代码实现,便于读者复现算法并应用于实际工程案例。该法克服了传统包络谱分析在强噪声和变速条件下敏感度下降的问题,提升了故障识别的鲁棒性和准确性。; 适合人群:具备一定信号处理基础,从事机械故障诊断、状态监测及相关【轴承故障检测】【借助倒谱预白化技术在变速条件下诊断轴承故障的应用】带通滤波后的倒谱预白化的平包络谱用于轴承故障检测(Matlab代码实现)领域研究的科研人员或工程师,尤其适合研究生及企业研发技术人员; 使用场景及目标:①应用于旋转机械(如电机、风机、齿轮箱)的轴承故障检测;②解决变速运行条件下因频率调制导致的传统诊断法失效问题;③提升在强噪声环境中微弱故障特征的提取能力; 阅读建议:建议结合Matlab代码逐步调试理解每一步信号处理流程,重点关注倒谱预白化与平包络谱的联合应用机制,并尝试将其迁移至其他类似故障诊断场景中验证效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值