This is bill的专属博客

仅做学习研究用途,转载如果未贴地址,原作者看到可以联系我,我会将您的地址附上...

排序:
默认
按更新时间
按访问量

Linear Algebra 笔记

0x00 文章来由 好久没写原创文章了 0x01 Vectors, Matrices and their Products 从row来理解 可以看成每行都是一个点积,这样得到的结果可以成为一个向量 从column来理解 可以看成A是多个向...

2018-09-11 20:39:32

阅读数:39

评论数:1

wh常用命令

0x01 查看显卡 spci | grep -i vga 0x02 查看系统版本 cat /proc/version uname -a 0x03 查看NVIDIA 显卡 nvidia-smi 0x04 查看CUDA版本 nvcc -V 0x05 不断刷新一个命令...

2018-04-03 09:14:07

阅读数:351

评论数:0

Stanford CS231n Notes

一、文章来由原博客来自:http://blog.csdn.net/scythe666/article/details/75265338 因为篇幅太长,不宜阅读与编辑,分篇如下二、cs231n 课程第二讲:数据驱动的图像分类方式:K最近邻与线性分类器(1)经典图像识别算法不可扩展,data-dri...

2017-08-14 14:31:57

阅读数:1225

评论数:0

MLDS Lecture Notes

一、文章来由原博客来自:http://blog.csdn.net/scythe666/article/details/75265338 因为篇幅太长,不宜阅读与编辑,分篇如下二、《一天搞懂深度学习》300多页的PPT,台大教授写的好文章。 对应的视频地址1、Lecture I: Intro...

2017-08-14 14:25:30

阅读数:791

评论数:0

ML超级大火锅

0x00 文章来由DL问题不断整理0x01 卷积层学习卷积核?该问题来自于知乎: https://www.zhihu.com/question/39022858,里面说到0x02 loss很低,但是accuracy一直在50%左右一般是什么原因,1500张图片做train最可能 overfitti...

2017-08-06 10:32:00

阅读数:2495

评论数:0

要怎样努力,才能成为很厉害的人?

博主是一个热血青年吧,一直信奉的也是一切杀不死我的,只会令我更坚强~~最近做出了一个看似很疯狂,但是完全足以改变一生的决定。闲余时间逛知乎,看了一个很有共鸣的答案。也许有些人觉得有些决定很疯狂不能实现,我只想说那是你太现实而无法实现梦想找的借口。转自:https://www.zhihu.com/q...

2016-11-07 05:57:49

阅读数:1786

评论数:11

Java基础总结(内部版)

Java基础总结  琥魄 浏览 4 2016-07-28 10:45:38 发表于: 网商银行技术博客 >> Java技术 编辑 删除 Java核心技术Java  修改标签  标签历史 阿里实习在内部博客发的博客, 排版较CSDN明显好看很多 ...

2016-07-28 10:53:59

阅读数:3285

评论数:6

《TCP/IP卷》读书笔记

本书所有测试网络例子1、TCP/IP的分层在图1 - 2的右边,我们注意到应用程序通常是一个用户进程,而下三层则一般在(操作系 统)内核中执行。尽管这不是必需的,但通常都是这样处理的,例如 U N I X操作系统。在图1 - 2中,顶层与下三层之间还有另一个关键的不同之处。应用层关心的是应用程序...

2016-07-22 10:38:16

阅读数:1874

评论数:1

Java基础总结

一、JVM1、内存模型1.1.1 内存分几部分(1)程序计数器可看作当前线程所执行的字节码的行号指示器。字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。在线程创建时创建。执行本地方法时,PC的值...

2016-07-06 17:47:55

阅读数:2731

评论数:3

Java超级大火锅

实习换语言到Java,基础很多需要整理,专门为Java开一个大火锅~~1、事务 事务指的是逻辑上的一组操作,这组操作要么全部成功,要么全部失败。 事务的4大特性:ACID,指数据库事务正确执行的四个基本要素的缩写。包含:原子性(Atomicity)、一致性(Consistency)、隔离性(I...

2016-07-02 10:56:18

阅读数:3797

评论数:2

C/C++超级大火锅

写在前面最近接触到一些基础知识,平时遇到的编程困惑也加入其中。准确说是写给自己看的,但是如果大家可以借鉴就更好。多数是c/c++,也有少量java基础和其他知识,貌似应该叫《计算机基础问题汇总》比较好。不断更新~~一、new 跟 malloc 的区别是什么?1.malloc/free是C/C++语...

2016-03-15 17:06:46

阅读数:4264

评论数:3

楼天城楼教主的acm心路历程(作为励志用)

转载的文章,好好加油!说不定什么时候我也可以说:“这题我虽然不会,但是AC还是可以的”。。。 利用假期空闲之时,将这几年GCJ,ACM,TopCoder 参加的一些重要比赛作个 回顾。昨天是GCJ2006 的回忆,今天时间上更早一些吧,我现在还清晰记得3 年 前,我刚刚参加ACM...

2013-10-22 17:51:27

阅读数:5705

评论数:0

Pareto(帕雷托)理论

由于最近看到了一篇社交网络中的论文提高了Pareto相关知识,所以整理了下网上关于Pareto相关理论的讲解,供大家参考:       维弗雷多·帕雷托 (Villefredo Pareto) 在1987年提出:社会财富的80%是掌握在20%的人手中,而余下的80%的人只占有20%的财富。渐渐...

2018-09-23 11:39:57

阅读数:15

评论数:0

pytorch fine-tune 预训练的模型

之一: torchvision 中包含了很多预训练好的模型,这样就使得 fine-tune 非常容易。本文主要介绍如何 fine-tune torchvision 中预训练好的模型。 安装 pip install torchvision 如何 fine-tune 以 resnet18 ...

2018-09-22 06:37:55

阅读数:21

评论数:0

[work] Accurate Large Minibatch SGD:Training ImageNet in 1 Hour 笔记

D后,权值的更新情况:   (3) 而如果这里直接将学习率乘与k的话,权值的更新情况:   (4) 要让这两条公式相等,就只能假设   但是由于这个假设并不能真的正确,所以会出现以下的情况: 1.是会在网络开始训练的前几代,网络的表现会激烈变化 2.是miniba...

2018-09-21 14:11:37

阅读数:9

评论数:0

sublime 3 Ubuntu 安装 sublimerge

1. follow 这个教程 https://www.sublimerge.com/sm3/docs/quick-start.html#installation Installation With Package Control Recommended. Package Control do...

2018-09-21 13:44:41

阅读数:12

评论数:0

[work] 深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)

前言 (标题不能再中二了)本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此我就不赘述了。 SGD 此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochast...

2018-09-21 09:41:07

阅读数:10

评论数:0

命令行启动 TeamViewer

之一:   1.Ubuntu KaLi 获取下载:wget -c  url 2.sudo dpkg -i filename 安装下载的文件 3.sudo apt-get -f install  4.停止服务。执行命令 sudo teamviewer --daemon stop 5.修改配...

2018-09-20 06:43:52

阅读数:30

评论数:0

Deep Learning 最优化方法之Adam

本文是Deep Learning 之 最优化方法系列文章的Adam方法。主要参考Deep Learning 一书。 整个优化系列文章列表: Deep Learning 之 最优化方法 Deep Learning 最优化方法之SGD Deep Learning 最优化方法之Momentum...

2018-09-19 15:56:30

阅读数:9

评论数:0

Deep Learning 最优化方法之RMSProp

本文是Deep Learning 之 最优化方法系列文章的RMSProp方法。主要参考Deep Learning 一书。 整个优化系列文章列表: Deep Learning 之 最优化方法 Deep Learning 最优化方法之SGD Deep Learning 最优化方法之Momen...

2018-09-19 15:56:03

阅读数:6

评论数:0

Deep Learning 最优化方法之AdaGrad

本文是Deep Learning 之 最优化方法系列文章的AdaGrad方法。主要参考Deep Learning 一书。 整个优化系列文章列表: Deep Learning 之 最优化方法 Deep Learning 最优化方法之SGD Deep Learning 最优化方法之Momen...

2018-09-19 15:55:27

阅读数:6

评论数:0

Deep Learning 最优化方法之Nesterov(牛顿动量)

本文是Deep Learning 之 最优化方法系列文章的Nesterov(牛顿动量)方法。主要参考Deep Learning 一书。 整个优化系列文章列表: Deep Learning 之 最优化方法 Deep Learning 最优化方法之SGD Deep Learning 最优化方...

2018-09-19 15:54:46

阅读数:9

评论数:0

Deep Learning 最优化方法之Momentum(动量)

本文是Deep Learning 之 最优化方法系列文章的Momentum(动量)方法。主要参考Deep Learning 一书。 整个优化系列文章列表: Deep Learning 之 最优化方法 Deep Learning 最优化方法之SGD Deep Learning 最优化方法之...

2018-09-19 15:54:01

阅读数:8

评论数:0

Deep Learning 最优化方法之SGD

本文是Deep Learning 之 最优化方法系列文章的SGD方法。主要参考Deep Learning 一书。 整个优化系列文章列表: Deep Learning 之 最优化方法 Deep Learning 最优化方法之SGD Deep Learning 最优化方法之Momentum(...

2018-09-19 15:52:53

阅读数:19

评论数:0

Deep Learning 之 最优化方法

写在前面本文主要是对Deep Learning一书最优化方法的总结,具体详细的算法,另起博文展开。    整个优化系列文章列表: Deep Learning 之 最优化方法 Deep Learning 最优化方法之SGD Deep Learning 最优化方法之Momentum(动量) ...

2018-09-19 15:52:07

阅读数:11

评论数:0

拉格朗日乘数法

阅读目录 1. 拉格朗日乘数法的基本思想 2. 数学实例 3. 拉格朗日乘数法的基本形态 4. 拉格朗日乘数法与KKT条件   拉格朗日乘数法(Lagrange Multiplier Method)之前听数学老师授课的时候就是一知半解,现在越发感觉拉格朗日乘数法应用的广泛性,所以特意抽时间...

2018-09-19 13:00:43

阅读数:5

评论数:0

python 类的私有属性和方法

类的私有属性: __private_attrs:两个下划线开头,声明该属性为私有,不能在类地外部被使用或直接访问。 在类内部的方法中使用时 self.__private_attrs。 1 2 类的方法: 在类地内部,使用def关键字可以为类定义一个方法,与一般函数定义不同,类方法必须...

2018-09-19 12:45:05

阅读数:9

评论数:0

[work*] 机器学习中正则化项L1和L2的直观理解

正则化(Regularization) 机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数。 L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指...

2018-09-18 15:13:40

阅读数:9

评论数:0

[work] 优化方法总结:SGD,Momentum,AdaGrad,RMSProp,Adam

1. SGD Batch Gradient Descent 在每一轮的训练过程中,Batch Gradient Descent算法用整个训练集的数据计算cost fuction的梯度,并用该梯度对模型参数进行更新:   Θ=Θ−α⋅▿ΘJ(Θ)Θ=Θ−α⋅▽ΘJ(Θ)   优点: c...

2018-09-18 15:03:02

阅读数:71

评论数:0

漫画讲解Advantage-Actor-Critic(A2C)

编者按:强化学习并不是什么新鲜的内容,时至今日,关于RL的优秀教程很多,尽管大家都在尽力把内容说得浅显易懂一些,但复杂的数学公式和大量图表仍让初学者望而却步。近日,数据科学家Rudy Gilman受此启发,决定制作一些漫画讲解强化学习的基本思路,以下是论智编译的内容和重制的图像。 大多数情况下,...

2018-09-18 12:20:13

阅读数:35

评论数:0

[work] How to Keep Alive SSH Sessions

How to Keep Alive SSH Sessions February 7, 2010 Many NAT firewalls time out idle sessions after a certain period of time to keep their trunks clean...

2018-09-14 10:38:17

阅读数:29

评论数:0

Ubuntu 16.04卸载CUDA 6.5和安装CUDA 8.0

一,引言 由于系统从Ubuntu 14.04升级到了16.04,原来的CUDA 6.5无法继续使用,所以重新安装了CUDA 8.0。 二,卸载CUDA 6.5 和驱动 以下操作都在命令行界面操作,比如按下Ctrl+alt+F1进入命令行  首先停止lightdm: sudo service ...

2018-09-14 10:15:12

阅读数:32

评论数:0

Anaconda环境的创建/激活/删除/管理

Anaconda环境的创建 conda create -n py3 python=3.5 其中py3表示创建环境的名字,后面python=3.5表示创建的版本。 conda create -n py3 python=3.5 numpy pandas 这个是在创建环境的时候同时安装包 A...

2018-09-14 09:17:17

阅读数:68

评论数:0

如何直观地解释 backpropagation 算法

作者:Anonymous 链接:https://www.zhihu.com/question/27239198/answer/89853077 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 BackPropagation算法是多层神经网络的训练中举足轻重的算法。...

2018-09-11 16:20:58

阅读数:17

评论数:0

人工神经网络——【BP】反向传播算法证明

第一步:前向传播 【注】此BP算法的证明仅限sigmoid激活函数情况。本博文讲道理是没错的,毕竟最后还利用代码还核对了一次理论证明结果。 关于更为严谨的BP证明,即严格通过上下标证明BP的博客请戳这里 简单的三层网络结构如下 参数定义:     可见层定义为X,共有n个单元,下标用...

2018-09-11 16:14:12

阅读数:34

评论数:0

Mask RCNN笔记

mask rcnn简介 mask rcnn是何凯明基于以往的faster rcnn架构提出的新的卷积网络,一举完成了object instance segmentation. 该方法在有效地目标的同时完成了高质量的语义分割。 文章的主要思路就是把原有的Faster-RCNN进行扩展,添加一个分支...

2018-09-11 15:43:35

阅读数:19

评论数:0

Feature Pyramid Networks for Object Detection 总结

最近在阅读FPN for object detection,看了网上的很多资料,有些认识是有问题的,当然有些很有价值。下面我自己总结了一下,以供参考。 1. FPN解决了什么问题? 答: 在以往的faster rcnn进行目标检测时,无论是rpn还是fast rcnn,roi 都作用在最后一层...

2018-09-11 15:22:53

阅读数:18

评论数:0

[work] RCNN,Fast RCNN,Faster RCNN 总结

一 背景知识 1.1 IOU的定义 物体检测需要定位出物体的bounding box,就像下面的图片一样,我们不仅要定位出车辆的bounding box 我们还要识别出bounding box 里面的物体就是车辆。对于bounding box的定位精度,有一个很重要的概念,因为我们算法不可能百...

2018-09-11 14:37:00

阅读数:21

评论数:0

[work*] 论文笔记:Fast(er) RCNN

在 RCNN 初步试水取得成功后,研究人员又迅速跟进,针对 RCNN 中的几点不足提出改进,接连推出了 fast-rcnn 和 faster-rcnn。关于这两篇论文,网上相关的文章实在是多如牛毛,因此,本篇博文不打算深入讲解,只是不落俗套地介绍一下它们改进的痛点,基本流程,以及我自己对一些小问题...

2018-09-11 14:24:39

阅读数:7

评论数:0

[work] 论文笔记--FAST RCNN

很久之前试着写一篇深度学习的基础知识,无奈下笔之后发现这个话题确实太大,今天发一篇最近看的论文Fast RCNN。这篇文章是微软研究院的Ross Girshick大神的一篇作品,主要是对RCNN的一些改进,但是效果十分明显,paper和项目的地址都能从Ross Girshick的主页找到:http...

2018-09-11 14:11:44

阅读数:11

评论数:0

深度学习论文笔记:Fast R-CNN

知识点 mAP:detection quality. Abstract 本文提出一种基于快速区域的卷积网络方法(快速R-CNN)用于对象检测。 快速R-CNN采用多项创新技术来提高训练和测试速度,同时提高检测精度。 采用VGG16的网络:VGG: 16 layers of 3x3 conv...

2018-09-11 14:09:32

阅读数:9

评论数:0

【目标检测】RCNN算法详解

Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmentation.” Proceedings of the IEEE conference on com...

2018-09-11 14:04:40

阅读数:15

评论数:0

RCNN- 将CNN引入目标检测的开山之作

前面一直在写传统机器学习。从本篇开始写一写 深度学习的内容。 可能需要一定的神经网络基础(可以参考 Neural networks and deep learning 日后可能会在专栏发布自己的中文版笔记)。 RCNN (论文:Rich feature hierarchies for accur...

2018-09-11 14:00:25

阅读数:11

评论数:0

[work] Faster R-CNN论文笔记

在介绍Faster R-CNN之前,先来介绍一些前验知识,为Faster R-CNN做铺垫。 一、基于Region Proposal(候选区域)的深度学习目标检测算法 Region Proposal(候选区域),就是预先找出图中目标可能出现的位置,通过利用图像中的纹理、边缘、颜色等信息,保证在...

2018-09-11 13:58:25

阅读数:10

评论数:0

RCNN 简介

reference link: http://blog.csdn.net/shenxiaolu1984/article/details/51066975 Region CNN(RCNN)可以说是利用深度学习进行目标检测的开山之作。作者Ross Girshick多次在PASCAL VOC的目标检测...

2018-09-11 13:52:00

阅读数:24

评论数:0

[work] Wikipedia 贝叶斯定理

贝叶斯定理(英语:Bayes' theorem)是概率论中的一个定理,它跟随机变量的条件概率以及边缘概率分布有关。在有些关于概率的解释中,贝叶斯定理(贝叶斯公式)能够告知我们如何利用新证据修改已有的看法。这个名称来自于托马斯·贝叶斯。 通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A...

2018-09-11 13:28:00

阅读数:18

评论数:0

文本检测之CTPN

论文作者现在就坐在旁边位置, 过来拜读一下他以前的文章 之一: 简介 文章基本信息 论文题目:Detecting Text in Natural Image with Connectionist Text Proposal Network,简称CTPN.该文章是ECCV2016乔宇老师的文...

2018-09-10 16:28:54

阅读数:28

评论数:0

faster rcnn中rpn的anchor

作者:马塔 链接:https://www.zhihu.com/question/42205480/answer/155759667 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。   最近也在看这部分内容,将自己的理解和大家分享一下,希望有所帮助。 首先我们需...

2018-09-10 16:19:26

阅读数:18

评论数:0

[work] 马尔科夫链、PCA和条件概率

[ 导读 ]马尔科夫链、主成分分析以及条件概率等概念,是计算机学生必学的知识点,然而理论的抽象性往往让学生很难深入地去体会和理解。而本文,将这些抽象的理论概念,用可视化的方式来解释,还可调节相应参数来改变结果,使这些抽象概念变得生动而立体! 2     计算机相关概念太难、太抽象?别怕...

2018-09-10 09:03:28

阅读数:29

评论数:0

[work] Sublime恢复到新安装状态

概述 如果不小心搞错了设置, Sublime Text可以通过移除data文件夹来恢复到初始安装状态。根据操作系统,这个文件夹的位置为: OS X: ~/Library/Application Support/Sublime Text 3 Windows: %APPDATA%\Sublime...

2018-09-09 14:39:37

阅读数:29

评论数:0

提示
确定要删除当前文章?
取消 删除