登录ms-co-co数据集官网,一直不能进入,翻墙之后开看到下载链接。有了下载链接下载还是很快的,在我这儿晚上下载,速度能达到7M/s,所以也不上传到网盘了,有需要的人等夜深人静的时候下载效果更佳哦。
我把2017的数据集下载链接贴上来,linux下wget非常快,不知道为什么迅雷不能下载,顺便说一下wget断点续传 wget -c http
coco数据集下载链接
各个链接的意思看链接里面的描述基本上就够了。不过还在罗嗦一句,第一组是train数据,第二组是val验证数据集,第三组是test验证数据集。数据包括了物体检测和keypoints身体关键点的检测。
http://images.cocodataset.org/zips/train2017.zip
http://images.cocodataset.org/annotations/annotations_trainval2017.zip
http://images.cocodataset.org/zips/val2017.zip
http://images.cocodataset.org/annotations/stuff_annotations_trainval2017.zip
http://images.cocodataset.org/zips/test2017.zip
http://images.cocodataset.org/annotations/image_info_test2017.zip
这些就是全部的microsoft coco数据集2017的链接了。
cocoAPI,踩过的坑
coco数据集的注释数据是以json格式存储的,coco很贴心的配置了数据读取的API,下载链接是github的:https://github.com/cocodataset/cocoapi
一般照着它的README文档来做就ok了,但是我用得时候踩了一个坑:如果有用python3来调用它的API的时候,需要先在python3下已经安装过cython(方法:pip3 install cython),然后修改makeconfig里的文件,将python修改为python3,然后再make就好了。
API自带例子,按照例子来做基本上就没应用什么应用这个api的问题了,因为我用到了单个人的图片,所以贴一个单人的提取方法with python
#signal person photo in MSCOCO
def load_data(self, dataDir, dataType, annType):
annFile = '{}annotations/{}_{}.json'.format(dataDir, annType, dataType)
self.coco = COCO(annFile)
catID = self.coco.getCatIds(catNms=['person'])
imgID = self.coco.getImgIds(catIds=catID)
if self.signle:
self.ids = []
for id in imgID:
img = self.coco.loadImgs(id)[0]
annID = self.coco.getAnnIds(imgIds=img['id'])
anns = self.coco.loadAnns(annID)
if len(anns) == 1:
self.ids.append(id)
else:
self.ids = imgID
# print('ok')
MPII数据集下载链接
顺便贴一下MPII的数据集,mpii数据集不用翻墙也能看得到网页链接,而且下载还很慢。先把链接贴过来。
http://datasets.d2.mpi-inf.mpg.de/andriluka14cvpr/mpii_human_pose_v1.tar.gz
http://datasets.d2.mpi-inf.mpg.de/andriluka14cvpr/mpii_human_pose_v1_u12_2.zip
http://datasets.d2.mpi-inf.mpg.de/andriluka14cvpr/mpii_human_pose_v1_sequences_batch1.tar.gz
http://datasets.d2.mpi-inf.mpg.de/andriluka14cvpr/mpii_human_pose_v1_sequences_batch2.tar.gz