TOP 10 开源的推荐系统简介

本文转自http://www.oschina.net/news/51297/top-10-open-source-recommendation-systems,所有权力归原作者所有。

最 近这两年推荐系统特别火,本文搜集整理了一些比较好的开源推荐系统,即有轻量级的适用于做研究的SVDFeature、LibMF、LibFM等,也有重 量级的适用于工业系统的 Mahout、Oryx、EasyRecd等,供大家参考。PS:这里的top 10仅代表个人观点。

#1.SVDFeature

主页:http://svdfeature.apexlab.org/wiki/Main_Page 语言:C++
一个feature-based协同过滤和排序工具,由上海交大Apex实验室开发,代码质量较高。在KDD Cup 2012中获得第一名,KDD Cup 2011中获得第三名,相关论文 发表在2012的JMLR中,这足以说明它的高大上。
SVDFeature 包含一个很灵活的Matrix Factorization推荐框架,能方便的实现SVD、SVD++等方法,  是单模型推荐算法中精度最高的一种。SVDFeature代码精炼,可以用 相对较少的内存实现较大规模的单机版矩阵分解运算。另外含有Logistic  regression的model,可以很方便的用来进行ensemble。

#2.LibMF

主页:http://www.csie.ntu.edu.tw/~cjlin/libmf/ 语言:C++
作者Chih-Jen Lin来自大名鼎鼎的台湾国立大学,他们在机器学习领域享有盛名,近年连续多届KDD Cup竞赛上均 获得优异成绩,并曾连续多年获得冠军。台湾大学的风格非常务实,业界常用的LibSVM, Liblinear等都是他们开发的,开源代码的效率和质量都非常高。
LibMF 在矩阵分解的并行化方面作出了很好的贡献,针对SGD(随即梯度下降)优化方法在并行计算中存在的locking problem和memory  discontinuity问题,提出了一种 矩阵分解的高效算法FPSGD(Fast Parallel  SGD),根据计算节点的个数来划分评分矩阵block,并分配计算节点。系统介绍可以见这篇 论文(ACM Recsys 2013的 Best paper Award)。

#3.LibFM

主页:http://www.libfm.org/ 语言:C++
作者是德国Konstanz大学的Steffen Rendle,他用LibFM同时玩转KDD Cup 2012 Track1和Track2两个子竞赛单元,都取得了很好的成绩,说明LibFM是非常管用的利器。
LibFM 是专门用于矩阵分解的利器,尤其是其中实现了MCMC(Markov Chain Monte  Carlo)优化算法,比常见的SGD优化方法精度要高,但运算速度要慢一些。当然LibFM中还 实现了SGD、SGDA(Adaptive  SGD)、ALS(Alternating Least Squares)等算法。

#4.Lenskit

主页:http://lenskit.grouplens.org/ 语言Java

这个Java开发的开源推荐系统,来自美国的明尼苏达大学的GroupLens团队,也是推荐领域知名的测试数据集Movielens的作者。
该源码托管在GitHub上,https://github.com/grouplens/lenskit。 主要包含lenskit-api,lenskit-core,  lenskit-knn,lenskit-svd,lenskit-slopone,lenskit-parent,lenskit-data- structures,lenskit-eval,lenskit-test等模块,主要实现了k-NN,SVD,Slope-One等  典型的推荐系统算法。

#5.GraphLab

主页:GraphLab - Collaborative Filtering 语言:C++
Graphlab 是基于C++开发的一个高性能分布式graph处理挖掘系统,特点是对迭代的并行计算处理能力强(这方面是hadoop的弱项),由于功能独 到,GraphLab在业界名声很响。 用GraphLab来进行大数据量的random  walk或graph-based的推荐算法非常有效。Graphlab虽然名气比较响亮(CMU开发),但是对一般数据量的应用来说可能还用不上。
GraphLab 主要实现了ALS,CCD++,SGD,Bias-SGD,SVD++,Weighted-ALS,Sparse-ALS,Non-negative  Matrix Factorization,Restarted Lanczos Algorithm等算法。

#6.Mahout

主页:http://mahout.apache.org/ 语言:Java
Mahout  是 Apache Software Foundation (ASF)  开发的一个全新的开源项目,其主要目标是创建一些可伸缩的机器学习算法,供开发人员在 Apache 在许可下免费 使用。Mahout项目是由  Apache Lucene社区中对机器学习感兴趣的一些成员发起的,他们希望建立一个可靠、文档翔实、可伸缩的项目,在其中实现一些常见的用于  聚类和分类的机器学习算法。该社区最初基于 Ngetal. 的文章 “Map-Reduce for Machine Learning on  Multicore”,但此后在发展中又并入了更多广泛的机器学习 方法,包括Collaborative  Filtering(CF),Dimensionality Reduction,Topic Models等。此外,通过使用 Apache  Hadoop 库,Mahout 可以有效地扩展到云中。
在Mahout的Recommendation类算法中,主要有User-Based CF,Item-Based CF,ALS,ALS on Implicit Feedback,Weighted MF,SVD++,Parallel SGD等。

#7.Myrrix

主页:http://myrrix.com/ 语言:Java
Myrrix 最初是Mahout的作者之一Sean  Owen基于Mahout开发的一个试验性质的推荐系统。目前Myrrix已经是一个完整的、实时的、可扩展的集群和推荐系统,主要  架构分为两部分:服务层:在线服务,响应请求、数据读入、提供实时推荐;计算层:用于分布式离线计算,在后台使用分布式机器学习算法为服务层更新机器学习   模型。Myrrix使用这两个层构建了一个完整的推荐系统,服务层是一个HTTP服务器,能够接收更新,并在毫秒级别内计算出更新结果。服务层可以单独使 用,无需 计算层,它会在本地运行机器学习算法。计算层也可以单独使用,其本质是一系列的Hadoop jobs。目前Myrrix以被  Cloudera 并入Oryx项目。

#8.EasyRec

主页:http://easyrec.org/ 语言:Java
EasyRec 是一个易集成、易扩展、功能强大且具有可视化管理的推荐系统,更像一个完整的推荐产品,包括了数据录入模块、管理模块、推荐挖掘、离线分析等。  EasyRec可以同时给多个不同的网站提供推荐服务,通过tenant来区分不同的网站。架设EasyRec服务器,为网站申请tenant,通过 tenant就可以很方便的集成到  网站中。通过各种不同的数据收集(view,buy.rating)API收集到网站的用户行为,EasyRec通过离线分析,就可以产生推荐信息,您的 网站就可以通过 Recommendations和Community Rankings来进行推荐业务的实现。

#9.Waffles

主页:http://waffles.sourceforge.net/ 语言:C++
Waffles 英文原意是蜂蜜甜饼,在这里却指代一个非常强大的机器学习的开源工具包。Waffles里包含的算法特别多,涉及机器学习的方方面面,推荐系统位于  其中的Waffles_recommend  tool,大概只占整个Waffles的1/10的内容,其它还有分类、聚类、采样、降维、数据可视化、音频处理等许许多多工具包,估计  能与之媲美的也就数Weka了。

#10.RapidMiner

主页:http://rapidminer.com/ 语言:Java
RapidMiner(前 身是Yale)是一个比较成熟的数据挖掘解决方案,包括常见的机器学习、NLP、推荐、预测等方法(推荐只占其中很小一部分),而且带有GUI的  数据分析环境,数据ETL、预处理、可视化、评估、部署等整套系统都有。另外RapidMiner提供commercial  license,提供R语言接口,感觉在向着一个商用的 数据挖掘公司的方向在前进。
======================================分割线======================================

开 源的推荐系统大大小小的还有很多,以上只是介绍了一些在学术界和工业界比较流行的TOP  10,而且基本上都是用C++/Java实现的,在参考资料[1]、[2]中还提  到的有Crab(Python)、CofiRank(C++)、MyMediaLite(.NET/C#)、PREA(Java)、Python- recsys(Python)、Recommendable(Ruby)、Recommenderlab(R)、  Oryx(Java)、recommendify(Ruby)、RecDB(SQL)等等,当然GitHub上还有更多。。。即有适合单机运行的,也有适 合集群的。虽然使用的编程语言不同,但实现 的算法都大同小异,主要是SVD、SGD、ALS、MF、CF及其改进算法等。

参考资料

[1]推荐系统开源软件列表汇总和点评
[2]开源中国社区 - 搜索:推荐系统

Original Link: http://ibillxia.github.io/blog/2014/03/10/top-10-open-source-recommendation-systems/
Attribution - NON-Commercial - ShareAlike - Copyright © Bill Xia

原文出处:@Cheedoong

展开阅读全文

002_推荐系统简介_推荐系统算法简介

05-18

<p>n 本教程为官方授权出品n</p>n<p>n <br /></p>n<p>n <span style="color:#404040;">伴随着大数据时代的到来,作为发掘数据规律的重要手段,机器学习已经受到了越来越多的关注。而作为机器学习算法在大数据上的典型应用,推荐系统已成为各行业互联网公司营销体系中不可或缺的一部分,而且已经带来了真实可见的收益。</span><br /><br /><span style="color:#404040;">目前,推荐系统和机器学习已经成为各大公司的发力重点,众多知名公司(如亚马逊、netflix、facebook、阿里巴巴、京东、腾讯、新浪、头条等)都在着眼于将蕴含在庞大数据中的宝藏发掘出来,懂机器学习算法的大数据工程师也成为了新时代最紧缺的人才。</span><br /><br /><span style="color:#404040;">精心打造出了机器学习与推荐系统课程,将机器学习理论与推荐系统项目实战并重,对机器学习和推荐系统基础知识做了系统的梳理和阐述,并通过电影推荐网站的具体项目进行了实战演练,为有志于增加大数据项目经验、扩展机器学习发展方向的工程师提供更好的学习平台。</span><br /><br /><span style="color:#404040;">本课程主要分为两部分,机器学习和推荐系统基础,与电影推荐系统项目实战。</span><br /><span style="color:#404040;">第一部分主要是机器学习和推荐系统基础理论的讲解,涉及到各种重要概念和基础算法,并对一些算法用Python做了实现;</span><br /><br /><span style="color:#404040;">第二部分以电影网站作为业务应用场景,介绍推荐系统的开发实战。其中包括了如统计推荐、基于LFM的离线推荐、基于模型的实时推荐、基于内容的推荐等多个模块的代码实现,并与各种工具进行整合互接,构成完整的项目应用。</span><br /><span style="color:#404040;">通过理论和实际的紧密结合,可以使学员对推荐系统这一大数据应用有充分的认识和理解,在项目实战中对大数据的相关工具和知识做系统的回顾,并且可以掌握基本算法,入门机器学习这一前沿领域,为未来发展提供更多的选择,打开通向算法工程师的大门。</span><br /><br /><span style="color:#404040;">谁适合学:</span><br /><span style="color:#404040;">1. 有一定的 Java、Scala 基础,希望了解大数据应用方向的编程人员</span><br /><span style="color:#404040;">2. 有 Java、Scala 开发经验,了解大数据相关知识,希望增加项目经验的开发人员</span><br /><span style="color:#404040;">3. 有较好的数学基础,希望学习机器学习和推荐系统相关算法的求职人员</span>n</p>

没有更多推荐了,返回首页