本文的作者是李锡涵(Xihan Li)。他是伦敦大学学院(UCL)计算机系博士研究生,谷歌开发者专家,主要研究方向为学习优化,在 NeurIPS、ICLR、AAMAS、CIKM 等会议发表过学术论文,Circuit Transformer 作者,图书《简明的 TensorFlow 2》(https://tf.wiki)作者。
过年这几天,DeepSeek 算是彻底破圈了,火遍大江南北,火到人尽皆知。虽然网络版和 APP 版已经足够好用,但把模型部署到本地,才能真正实现独家定制,让 DeepSeek R1 的深度思考「以你为主,为你所用」。
关于本地部署,大多数人使用的是蒸馏后的8B/32B/70B版本,本质是微调后的Llama或Qwen模型,并不能完全发挥出DeepSeek R1的实力。
然而,完整的671B MoE模型也可以通过针对性的量化技术压缩体积,从而大幅降低本地部署门槛,乃至在消费级硬件(如单台Mac Studio)上运行。
那么,如何用 ollama 在本地部署 DeepSeek R1 671B(完整未蒸馏版本)模型呢?一篇在海外热度很高的简明教程即将揭晓。
- 作者主页:https://snowkylin.github.io
- 原文地址:https://snowkylin.github.io/blogs/a-note-on-deepseek-r1.html
本地部署后,让 DeepSeek R1 「数草莓」视频链接:
https://mp.weixin.qq.com/s/GnHzsgvW90DGChENqTBsRw?token=1784997338&lang=zh_CN
模型选择
原版 DeepSeek R1 671B 全量模型的文件体积高达 720GB,对于绝大部分人而言,这都大得太离谱了。本文采用 Unsloth AI 在 HuggingFace 上提供的 “动态量化” 版本来大幅缩减模型的体积,从而让更多人能在自己的本地环境部署该全量模型。
“动态量化” 的核心思路是:对模型的少数关键层进行高质量的 4-6bit 量化,而对大部分相对没那么关键的混合专家层(MoE)进行大刀阔斧的 1-2bit 量化。通过这种方法,DeepSeek R1 全量模型可压缩至最小 131GB(1.58-bit 量化),极大降低了本地部署门槛,甚至能在单台 Mac Studio 上运行!
根据我自己的工作站配置,我选择了以下两个模型进行测试:
- DeepSeek-R1-UD-IQ1_M(671B,1.73-bit 动态量化,158 GB,HuggingFace)
- DeepSeek-R1-Q4_K_M(671B,4-bit 标准量化,404 GB,HuggingFace)
Unsloth AI 提供了4 种动态量化模型(1.58 至 2.51 比特,文件体积为 131GB 至 212GB),可根据自身硬件条件灵活选择。建议阅读官方说明了解各版本差异。
- Unsloth AI 官方说明:https://unsloth.ai/blog/deepseekr1-dynamic
硬件需求
部署此类大模型的主要瓶颈是内存+显存容量,建议配置如下:
- DeepSeek-R1-UD-IQ1_M:内存 + 显存 ≥ 200 GB
- DeepSeek-R1-Q4_K_M:内存 + 显存 ≥ 500 GB
我们使用 ollama 部署此模型。ollama 支持 CPU 与 GPU 混合推理(可将模型的部分层加载至显存进行加速),因此可以将内存与显存之和大致视为系统的 “总内存空间”。
除了模型参数占用的内存+显存空间(158

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



