光储协同优化算法是指在光伏发电系统和储能系统之间进行协调,以实现多种目标如提高能源利用效率、稳定电网频率、减少电压波动以及降低运行成本等的一系列数学模型和技术方法。
基本概念
光伏(Photovoltaic, PV)系统是将太阳光转化为电能的设备,而储能系统则是用来储存多余的电能以便在需要时使用。由于太阳能的间歇性和不可预测性,PV系统的输出功率会随天气条件变化而波动,这给电网带来了挑战。因此,通过与储能系统的结合,可以平滑电力输出,改善电网稳定性。
主要算法和技术
模型预测控制(MPC)
MPC是一种基于模型的先进控制策略,它可以根据当前的状态信息和未来一段时间内的预测数据来做出最优决策。对于光储系统来说,MPC能够根据气象预报和历史数据预测未来的发电量,并据此调整储能系统的充放电计划。
粒子群优化(PSO)
PSO是一种模拟鸟类觅食行为的群体智能算法,适用于解决复杂的非线性优化问题。在光储系统中,PSO被用于寻找最优的调度方案,例如最大化互补发电系统的年净收益或最小化系统的运行成本。
整数规划
整数规划是一种优化技术,特别适合处理包含离散变量的问题。在光储调度中,这种方法可以帮助确定最佳的储能控制策略,以提升系统的运行效率和经济性。
双层优化模型
双层优化模型通常包括一个外层优化过程和一个内层优化过程。前者负责制定长期的战略规划,比如容量配置;后者则关注具体的短期操作细节,如每日的充放电计划。
实际应用案例
-
计及配网电压越限的光储协同优化运行策略:此策略采用两阶段的方法来治理由分布式光伏接入引起的电压越限问题。第一阶段计算节点电压灵敏度,第二阶段建立优化模型并通过PSO算法求解,确保在保障配电网电压安全的同时实现运行成本的最优化。
-
V2G(Vehicle-to-Grid)协调优化调度策略:这种策略考虑了电动车作为移动储能装置参与到电网中的可能性,通过高效能的粒子群优化算法模拟电网、微网控制中心及电动车用户之间的交互,特别适合光伏微网环境下的研究