Ollama本地部署DeepSeek(Mac)

准备工作

DeepSeek对比

DeepSeek-r1

DeepSeek-R1的多个版本:加上2个原装671B的,总计8个参数版本

DeepSeek-R1 671B
DeepSeek-R1-Zero 671B
DeepSeek-R1-Distill-Llama-70B
DeepSeek-R1-Distill-Qwen-32B
DeepSeek-R1-Distill-Qwen-14B
DeepSeek-R1-Distill-Llama-8B
DeepSeek-R1-Distill-Qwen-7B
DeepSeek-R1-Distill-Qwen-1.5B


总共28个Tag版本,大概根据自己的需要进行选择。

基于Ollama和各类插件构建智能对话

终端、open-webui(支持联网)、Chatbox

Ollama

1、安装ollama

进入官网:Ollama,点击【Download】,选择对应的版本

2、选择DeepSeek的版本

进入DeepSeek官网:deepseek-r1,查看对应的版本的命令,我电脑配置只能安装8b

3、安装对应的参数模型

打开本地的命令提示符「我个人电脑是iMac,故在启动台的搜索框里:输入终端,即可打开」,输入以下命令后,回车键开始下载安装对应参数的模型:

ollama pull deepseek-r1:8b

下载完成后,可以通过ollama list指令查看所有本地模型占用的存储空间

ollama list 

想看具体某一个模型的参数。可以使用ollama show指令:

ollama show <模型名称> 

具体如下图所示

4、运行以下命令,便可以和deepseek R1对话了

ollama run deepseek-r1:8b

open-webui

基于docker安装,且支持联网搜索

1、安装Docker

通过docker的官网下载docker

Get Started | Docker

2、打开终端

安装好后在右下角点击Terminal,打开控制台

3、输入以下命令——等待安装完成

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

安装完成后可以在Containers重查看

4、创建管理员账号

点击上面的链接:http://localhost:3000/auth,创建相关管理员账号之后

5、开始和R1对话

 6、打开管理员设置,打开联网搜索

  • 点击左下角的用户信息,弹窗对话框,点击【设置】

  • 在设置界面上点击【管理员设置】

或输入http://localhost:3000/admin/settings打开管理员面板,在联网搜索选项中打开联网搜索,默认是关闭的,搜索引擎可以选择免费的duckduckgo,其他的都需要输入密钥,如果有相应搜索引擎的API,自行进行设置,设置完成后记得点右下角的【保存】按钮。

ChatBox部署

1、下载Chatbox

通过chatbox官网下载对应的客户端Chatbox AI官网:办公学习的AI好助手,全平台AI客户端,官方免费下载

https://download.csdn.net/download/sean9169/90343718(Mac)

2、设置

安装好chatbox之后,进行如下图所示的设置,设置完成后点击【保存】

3、打开对话框

### 比较硅基流动与Ollama本地部署DeepSeek #### 架构方面 硅基流动生成的DeepSeek模型依赖特定平台的支持,如Cherry Studio客户端来完成本地化部署。这种模式下,用户通过注册硅基流动账号获取访问权限并下载所需资源,在个人计算机上安装专用软件以运行模型[^2]。 相比之下,基于Ollama的方式针对Mac Arm系统的特性进行了优化设计,提供了一套完整的解决方案用于直接在该类硬件环境中搭建DeepSeek服务环境。这种方式不需要额外的应用程序作为中介层,而是利用操作系统原生特性和容器技术实现高效隔离和管理[^1]。 #### 性能表现 对于采用硅基流动方案而言,尽管能够满足基本需求,但由于存在中间件以及可能存在的网络延迟等因素影响,整体响应速度可能会稍逊一筹;而且受限于PC本身的计算能力和内存大小,复杂任务处理效率也可能受到影响。 而在ARM架构下的OLLAMA部署则充分利用了苹果M系列芯片的强大算力优势,减少了不必要的开销,并且可以更好地发挥GPU加速作用,从而获得更流畅的操作体验和更快捷的结果反馈。此外,它还支持多实例并发执行等功能,进一步提升了灵活性和扩展性。 #### 配置要求 要成功实施硅基流动版DeepSeek,通常需要一台具备一定规格以上的Windows或Linux主机,并确保有足够的磁盘空间存储庞大的预训练权重文件。同时也要注意兼容性的考量,因为某些旧型号设备或许并不完全适配最新版本的框架库。 相反地,面向MAC ARM用户的OLLAMA路径更加简便易行——只需遵循官方文档指导即可顺利完成整个过程。更重要的是,这种方法几乎不对机器本身提出过高门槛,即使是入门级的新款Apple Silicon Mac也能胜任愉快。 ```bash # OLLAMA 安装命令示例 (适用于 macOS ARM) brew install ollama-cli ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

能源革命

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值