3.安装cuDNN详细步骤(含安装截图)

3.安装cuDNN

前面步骤:
1.安装anaconda
2.安装CUDA

3.0 什么是cuDNN?为什么要安装它?

cuDNN(CUDA Deep Neural Network)是NVIDIA推出的专为深度学习优化的GPU加速库,提供了神经网络核心操作(如卷积、池化、归一化等)的高性能实现。其本质是通过高度优化的算法和内存管理,将深度学习框架(如PyTorch、TensorFlow)的计算指令映射到GPU硬件,最大化并行计算效率。

安装cuDNN的意义在于:

  1. 性能提升:相比直接调用CUDA基础API,cuDNN能显著加速训练和推理过程,尤其在复杂模型(如CNN、Transformer)中可带来数倍的效率提升。
  2. 框架依赖:主流深度学习框架(如PyTorch)底层依赖cuDNN实现核心运算,未安装时可能回退到低效的CPU或未优化GPU代码。

(补充:cuDNN通过计算图优化(Graph API)和混合精度训练支持,进一步减少显存占用和计算冗余,是构建高效深度学习环境的核心组件。)

3.1 下载cuDNN

官网下载cuDNN

这个地址如果直接点击下载的话,需要注册一个账号。

使用迅雷下载不需要注册账号了,下载速度还很快

打开下载地址,选择适合自己CUDA的cuDNN版本下载。

点击右键,复制下载链接。
在这里插入图片描述
图41

在迅雷下载中新建下载链接,然后把下载链接复制过来,点击下载,见图42-45
在这里插入图片描述

图42
请添加图片描述
图43
请添加图片描述
图44
请添加图片描述
图45

3.2 安装cuDNN

下载完成之后,把下载好的压缩包解压,然后把cuDNN的bin,include,lib文件夹复制到CUDA对应的文件夹内,替换原来CUDA的相应文件(弄过去之后原来的cuDNN文件夹就没用了可以删掉)。
49
图46
三个文件夹分别弄过去的截图如图47-49
50
图4751
图4852
图49

3.3添加环境变量

把图53的四个环境变量添加上

图53请添加图片描述
至此,cuDNN安装完毕,成功安装!
下一步:安装pytorch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值