【Leetcode-2022.1.4】913. 猫和老鼠

这篇博客介绍了在一个无向图上进行的猫鼠追逐游戏中,如何通过记忆化搜索实现双方最优策略的分析。游戏规则是猫和老鼠轮流移动,目标分别是捕捉对方或到达安全的洞口。作者通过定义状态转移矩阵dp,实现了从任意初始状态推导出游戏结局的功能,最终得出游戏可能的胜负或平局结果。

猫和老鼠
题目:两位玩家分别扮演猫和老鼠,在一张无向图上进行游戏,两人轮流行动。图的形式是:graph[a] 是一个列表,由满足 ab 是图中的一条边的所有节点 b 组成。老鼠从节点 1 开始,第一个出发;猫从节点 2 开始,第二个出发。在节点 0 处有一个洞。在每个玩家的行动中,他们必须沿着图中与所在当前位置连通的一条边移动。例如,如果老鼠在节点 1 ,那么它必须移动到 graph[1] 中的任一节点。此外,猫无法移动到洞中(节点 0)。然后,游戏在出现以下三种情形之一时结束:
1.如果猫和老鼠出现在同一个节点,猫获胜。
2.如果老鼠到达洞中,老鼠获胜。
3.如果某一位置重复出现(即,玩家的位置和移动顺序都与上一次行动相同),游戏平局。
给你一张图 graph ,并假设两位玩家都以最佳状态参与游戏:
如果老鼠获胜,则返回 1; 如果猫获胜,则返回 2; 如果平局,则返回 0 。
输入:graph = [[2,5],[3],[0,4,5],[1,4,5],[2,3],[0,2,3]]
输出:0
方法一:记忆化搜索(又是CV的一天)

  1. dp[mouse][cat][k] 表示从老鼠位于节点mouse、猫位于节点cat、游戏已经进行了k轮的状态开始,猫和老鼠都按照最优策略的情况下的游戏结果。
  2. 最优策略的选择顺序:胜–平--输
class Solution {
    static final int DRAW = 0;
    static final int MOUSE = 1;
    static final int CAT = 2;
    int n;
    int[][] graph;
    int[][][] dp;

    public int catMouseGame(int[][] graph) {
        n = graph.length;
        this.graph = graph;
        this.dp = new int[n][n][n * 2];
        for(int i = 0; i < n; i++){
            for(int j = 0; j < n; j++){
                Arrays.fill(dp[i][j],-1);
            }
        }
        return getResult(1,2,0);
    }

    //获取比赛结果(鼠的坐标,猫的坐标,第几轮)
    public int getResult(int mouse, int cat, int k){
        if(k == n * 2) return DRAW;
        if(dp[mouse][cat][k] == -1){
            if(mouse == 0) dp[mouse][cat][k] = MOUSE;
            else if(mouse == cat) dp[mouse][cat][k] = CAT;
            else getNext(mouse,cat,k);  
        }
        return dp[mouse][cat][k];
    }

    //选择策略
    public void getNext(int mouse, int cat, int k){
        int cur = k % 2 == 0 ? mouse : cat;//根据轮数判断当前移动的角色
        int bestResult = cur == mouse ? MOUSE : CAT;//最优结果
        //选择最优的策略:胜--平--输
        int curResult = bestResult;//当前结果
        int result = cur == mouse ?  CAT : MOUSE;//默认最差结果
        for(int i : graph[cur]){//下一步的位置
            if(cur == cat && i == 0) continue;
            curResult = cur == mouse ? getResult(i, cat, k + 1) : getResult(mouse, i, k + 1) ;
            //如果得到最优结果可以提前退出循环,得到平局和最差结果需要继续循环
            if(curResult == bestResult){
                result = bestResult;
                break;
            }else if(curResult == DRAW){
                result = DRAW;
            } 
        }
        dp[mouse][cat][k] = result;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值