Python人脸识别黑科技(一):50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识

Python教程 专栏收录该内容
18 篇文章 1 订阅

Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识

 

本篇文章我们来讲一下关于AI相关的人脸追踪,人脸识别相关的一些知识。当然本篇教程为(上)部分,讲一下利用python+opencv来实现人脸识别与追踪,明后天出(下)部分,用python来通过指纹对比实现人脸验证、人脸解锁。

Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识
Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识

 

这两节课呢,代码量都不是很多,鄙人尽量多注释点,便于大家理解。那我们就不多啰嗦废话了,直接上干货!

Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识
Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识

OpenCV

opencv目前来讲是十分流行的视觉库,而且可以支持多语言。说到opencv就不得不说它的cascades分类器。

如果我们要判断一张图片是不是有一张脸,早期方式是通过成千上万的分类器去从头匹配到尾,这样看并没有什么什么毛病,但判断的图片多了呢?那可能需要猴年马月。opencv的cascades呢,就把这些用来判断人脸特征的容器划分成多块层层匹配,到一层不匹配就被丢弃。

这好比一群人去公司面试,公司第一个要求是只要男人,那一批女人就走了,公司说只要本科,一批专科走了,公司说要两年工作经验的,又会走一批,直到最后。这样的工作量比每个人面试不管男女都过一遍流程轻松的多。

环境拓扑:

操作系统:windows7

python版本:2.7.14

opencv版本:3.x

环境配置:

1.安装python(额...这个当我没说)

2.安装Opencv

这个从官网下载就OK啦

Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识
Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识

 

下载完之后直接解压就行,推荐解压到跟你的python安装的父路径。

3.使用pip安装numpy

打开cmd输入:

pip install numpy

进行安装,安装完毕后会给提示。

Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识
Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识

 

4.找到你的opencv安装路径(比如我的是D盘)

复制D:opencvopencv3.xuildpython.7\x64路径下的cv2.py

Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识
Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识

 

注意:我的windows版本为64位所以我选择的是X64,如果你的是32位的话你需要选择X86文件夹下的cv2.pyd

复制完之后,粘贴到你的python安装路径下的Lib/site-packages这个文件夹下。

完成上面这些就基本OK啦,我们在写代码之前先来测试一下,环境是否配置成功。

在CMD命令行下运行python:

import numpy

import cv2

如果没有报错,说明安装完成。

Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识
Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识

 

实现原理:

1.调用计算机摄像头

cv2.Videocamture(0)

2.将摄像头数据按帧来取(相当于给每一帧图片的人脸加框框)

cam.red()

3.将每一帧摄像头记录的数据带入opencv让classifier去判断人脸

detectMultiScale()

4.如果存在人脸给人脸标记画框

cv2.rectangle()

5.输出画框后的帧动画

cv2.imshow('My Camera',frame)

代码实现:

第一步定义一个识别函数:

先放图片,这个地方比较重要,我在下面会详细的说一下。

Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识
标题

 

6-7行代码说明:

首先创建classifier,为什么要弄这个呢?

引用的haarcascade开头的文件是opencv里面关于人脸级联分类器,你在opencv文件夹下的sourcesdatahaarcascades可以看到:

说明功能:

人脸检测器(默认):haarcascade_frontalface_default.xml

人脸检测器(快速Harr):haarcascade_frontalface_alt2.xml

人脸检测器(侧视):haarcascade_profileface.xml

眼部检测器(左眼):haarcascade_lefteye_2splits.xml

眼部检测器(右眼):haarcascade_righteye_2splits.xml

嘴部检测器:haarcascade_mcs_mouth.xml

鼻子检测器:haarcascade_mcs_nose.xml

身体检测器:haarcascade_fullbody.xml

人脸检测器(快速LBP):lbpcascade_frontalface.xml

1:haarcascade_frontalface_alt.xml

Stump-based 20x20 gentle adaboost frontal face detector.

2:haarcascade_frontalface_alt2.xml

Tree-based 20x20 gentle adaboost frontal face detector.

3:haarcascade_frontalface_alt_tree.xml

Stump-based 20x20 gentle adaboost frontal face detector.This detector uses tree of stage classifiers instead of a cascade

4:haarcascade_frontalface_default.xml

Stump-based 24x24 discrete(?) adaboost frontal face detector.

以上这四个鄙人都测试过,haarcascade_frontalface_alt.xml这个效果是最好的,其它的大家可以单个测试。

设定灰度:

灰度的设定是为了增强面部轮廓的对比度,这是增加精度必不可少的。

核心代码解剖:

DetectMultiScale 函数是一个检测物体的通用函数,我们介绍一下:

Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识
Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识

 

Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识

 

gray:这是转换成灰度后的图片

scaleFactor:补偿参数,一般设置值为1.1-1.5比较好,效果大家自己改着看

minNeighbors:对当前其周围有多少物体进行定义

minSize:设定窗口大小

flags:略抽象,选择默认或者上图即可

画方框:

定义xywh利用for循环读取faces变量里面的坐标,然后通过rectangle()函数进行画方框。

代码下部分:

Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识
Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识

 

OK,写完代码之后,我们把上部分代码跟下部分代码拼凑起来,运行下试一下:

Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识
Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识

 

大家凑合看吧,笔记本有点渣,不过随着人的晃动,都可以完美的识别出来,由于没法上视频,大家就自行测试吧。

转自:Python雁横

部分来自:www.ruanally.com

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值