基于tensorflow2.0的GA优化BP神经网络的代码 遗传算法定义完成之后,写BP网络部分,采用tensorflow2.0框架搭建网络(简单结构的网络采用tensorflow的Sequential容器搭建非常快捷,比pytorch方便很多)。定义适应度函数,采用R2做为适应度函数,由于R2越大模型越优秀,而我们上面定义的遗传算法是求解函数最小值的,因此对R2取反。数据导入完成之后定义BP网络,采用Sequential方式搭建,可以看到就几行代码,非常简单方便。首先导入数据并做简单处理,本次网络模型的训练数据采用的是某地的降水量数据。最后是整体的预测效果展示。