牛客NC13593 一起来数二叉树吧 - 动态规划

本文解析了使用动态规划解决二叉树计数问题的方法,特别强调了通过避免对称二叉树重复计数的技巧。状态转移方程详细解释了如何递归构建不同节点和叶子数的二叉树。

dp[i][j]:结点数为i,叶子数为j时二叉树的数量。

状态转移方程:

令x,y分别表示二叉树的左子树的结点数和叶子数,则二叉树的右子树的结点数和叶子数为i - x - 1,j - y。

dp[i][j] = dp[x][y] * dp[i - x - 1][j - y] for 0 <= x < i, 0 <= y <= min(x, j)。

其实这个解法会使左右子树对称的二叉树被重复计数,但这道题好像把对称的二叉树看成两个不同的二叉树,所以才可以这么解题。

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const ll mod = 1000000007;
ll dp[55][55];

int main(){
	memset(dp, 0, sizeof(dp));
	dp[0][0] = dp[1][1] = 1;  // 需要注意边界值的处理
	for(int i = 2; i <= 50; ++i)
		for(int j = 1; j <= i; ++j)
			for(int x = 0; x < i; ++x)  // x从0开始, 因为左子树可能没有结点
				for(int y = 0; y <= min(x, j); ++y)
					dp[i][j] = (dp[i][j] + dp[x][y] * dp[i - x - 1][j - y]) % mod;
	int n, m;
	while(cin>>n>>m)
		cout<<dp[n][m]<<endl;
	return 0;
}

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值