dp[i][j]:结点数为i,叶子数为j时二叉树的数量。
状态转移方程:
令x,y分别表示二叉树的左子树的结点数和叶子数,则二叉树的右子树的结点数和叶子数为i - x - 1,j - y。
dp[i][j] = dp[x][y] * dp[i - x - 1][j - y] for 0 <= x < i, 0 <= y <= min(x, j)。
其实这个解法会使左右子树对称的二叉树被重复计数,但这道题好像把对称的二叉树看成两个不同的二叉树,所以才可以这么解题。
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const ll mod = 1000000007;
ll dp[55][55];
int main(){
memset(dp, 0, sizeof(dp));
dp[0][0] = dp[1][1] = 1; // 需要注意边界值的处理
for(int i = 2; i <= 50; ++i)
for(int j = 1; j <= i; ++j)
for(int x = 0; x < i; ++x) // x从0开始, 因为左子树可能没有结点
for(int y = 0; y <= min(x, j); ++y)
dp[i][j] = (dp[i][j] + dp[x][y] * dp[i - x - 1][j - y]) % mod;
int n, m;
while(cin>>n>>m)
cout<<dp[n][m]<<endl;
return 0;
}
本文解析了使用动态规划解决二叉树计数问题的方法,特别强调了通过避免对称二叉树重复计数的技巧。状态转移方程详细解释了如何递归构建不同节点和叶子数的二叉树。
1857

被折叠的 条评论
为什么被折叠?



