Spark系列(15)—— SparkSQL语法优化

本文详细介绍了SparkSQL的优化策略,包括基于RBO的谓词下推、列剪裁和常量替换,以及基于CBO的统计信息收集和使用。此外,还讨论了广播Join和SMB Join的优化方法,帮助提升SparkSQL的执行效率。
摘要由CSDN通过智能技术生成

SparkSQL在整个执行计划处理的过程中使用了Catalyst 优化器

1 基于RBO的优化

在Spark 3.0 版本中,Catalyst 总共有 81 条优化规则(Rules),分成 27 组(Batches),其中有些规则会被归类到多个分组里。因此,如果不考虑规则的重复性,27 组算下来总共会有 129 个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shangjg3

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值