YOLO目标检测创新改进与实战案例专栏
专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLO基础解析+创新改进+实战案例
介绍

摘要
边界框回归(BBR)在目标检测和实例分割中被广泛使用,这是目标定位中的一个重要步骤。然而,大多数现有的边界框回归损失函数在预测框与真实框的宽高比相同,但宽度和高度值完全不同时,无法被优化。为了解决上述问题,我们充分探索了水平矩形的几何特征,并提出了一种基于最小点距离的新颖边界框相似度比较度量MPDIoU,该度量包含了现有损失函数中考虑的所有相关因素,即重叠或非重叠区域、中心点距离以及宽度和高度的偏差,同时简化了计算过程。在此基础上,我们提出了一种基于MPDIoU的边界框回归损失函数,称为LMPDIoU。实验结果表明,将MPDIoU损失函数应用于最先进的实例分割(例如,YOLACT)和目标检测(例如,YOLOv7)模型,并在PASCAL VOC、MS COCO和IIIT5k数据集上进行训练,其性能超过了现有的损失函数。
创新点
MPDIoU (Minimum Point Distance Intersection over Union) 是一个创新
MPDIoU是一种新的边界框回归损失函数,针对目标检测和实例分割任务,尤其在预测框与真实框宽高比相同但尺寸不同时更有效。它综合了重叠、中心点距离和尺寸偏差,简化了计算并提高性能,已在YOLOv7和YOLACT等模型上得到验证。
订阅专栏 解锁全文
9857

被折叠的 条评论
为什么被折叠?



