如何使用 YOLOv9 在图像/视频中进行对象检测

本文档介绍了如何使用 YOLOv9 进行图像和视频对象检测,包括安装库、选择模型、编写预测与检测函数,并详细阐述了每个步骤。YOLOv9 通过引入 PGI 和 GELAN 技术,提升了检测效率和准确性。文章还提供了图像和视频检测的实例以及结果的保存和可视化方法。
摘要由CSDN通过智能技术生成

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

YOLOv9 引入了可编程梯度信息 (PGI) 和广义高效层聚合网络 (GELAN) 等开创性技术,标志着实时目标检测领域的重大进步。该模型在效率、准确性和适应性方面都有显著提高,

在这里插入图片描述

步骤 1:安装必要的库

pip install opencv-python ultralytics

第 2 步:导入库

import cv2
from ultralytics import YOLO

第 3 步:选择模型

model = YOLO("yolov9c.pt")

在这个网站上,直达链接,可以比较不同的模型并权衡它们各自的优缺点。在这种情况下,选择 yolov9c.pt。

第 4 步:编写函数来预测和检测图像和视频中的对象

# 预测函数:给定模型、图像、类别和置信度,返回模型的预测结果
def predict(chosen_model, img, classes=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值