YOLO目标检测创新改进与实战案例专栏
专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLO基础解析+创新改进+实战案例
YOLOv9 引入了可编程梯度信息 (PGI) 和广义高效层聚合网络 (GELAN) 等开创性技术,标志着实时目标检测领域的重大进步。该模型在效率、准确性和适应性方面都有显著提高,

步骤 1:安装必要的库
pip install opencv-python ultralytics
第 2 步:导入库
import cv2
from ultralytics import YOLO
第 3 步:选择模型
model = YOLO("yolov9c.pt")
在这个网站上,直达链接,可以比较不同的模型并权衡它们各自的优缺点。在这种情况下,选择 yolov9c.pt。
第 4 步:编写函数来预测和检测图像和视频中的对象
# 预测函数:给定模型、图像、类别和置信度,返回模型的预测结果
def predict(chosen_model, img, classes=
本文档介绍了如何使用 YOLOv9 进行图像和视频对象检测,包括安装库、选择模型、编写预测与检测函数,并详细阐述了每个步骤。YOLOv9 通过引入 PGI 和 GELAN 技术,提升了检测效率和准确性。文章还提供了图像和视频检测的实例以及结果的保存和可视化方法。
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



