YOLO目标检测创新改进与实战案例专栏
专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLO基础解析+创新改进+实战案例
介绍

摘要
结构重参数化在各种计算机视觉任务中引起了越来越多的关注。它旨在提高深度模型的性能,同时不引入任何推理时间成本。虽然在推理过程中效率很高,但这些模型在复杂的训练阶段中依赖于复杂的训练块来达到高准确性,导致额外的大量训练成本。本文介绍了在线卷积重参数化(OREPA),这是一个两阶段的流程,
本文介绍了在线卷积重参数化(OREPA)技术,该技术应用于YOLOv8,旨在减少训练开销,提高模型性能。OREPA通过线性缩放层和块压缩策略,实现了训练速度的显著提升和内存占用的降低,同时在ImageNet及目标检测任务上表现出色。
订阅专栏 解锁全文
2995

被折叠的 条评论
为什么被折叠?



