YOLO目标检测创新改进与实战案例专栏
专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLO基础解析+创新改进+实战案例
介绍
摘要
CNN架构通常对内存和计算资源的要求较高,这使得它们在硬件资源有限的嵌入式系统中难以实现。我们提出了一种用于构建轻量级深度神经网络的双卷积核(DualConv)方法。DualConv结合了 3 × 3 3 \times 3 3×3和 1 × 1 1 \times 1 1×1的卷积核,同时处理相同的输入特征图通道,并利用组卷积技术高效地排列卷积滤波器。DualConv可以应用于任何CNN模型,例如用于图像分类的VGG-16和ResNet-50,用于目标检测的YOLO和R-CNN,或
该博客介绍了针对轻量级深度学习的DualConv技术,它结合3x3和1x1卷积核以降低计算成本和参数数量,同时提高准确性。在YOLOv8中应用DualConv,实现在减少54%参数量的同时,CIFAR-100数据集上精度仅下降0.68%,PASCAL VOC数据集上目标检测精度提升4.4%。此外,文章讨论了组卷积技术如何进一步提高效率。
订阅专栏 解锁全文
5218

被折叠的 条评论
为什么被折叠?



