【YOLOv8改进-卷积Conv】DualConv( Dual Convolutional):用于轻量级深度神经网络的双卷积核

该博客介绍了针对轻量级深度学习的DualConv技术,它结合3x3和1x1卷积核以降低计算成本和参数数量,同时提高准确性。在YOLOv8中应用DualConv,实现在减少54%参数量的同时,CIFAR-100数据集上精度仅下降0.68%,PASCAL VOC数据集上目标检测精度提升4.4%。此外,文章讨论了组卷积技术如何进一步提高效率。
摘要由CSDN通过智能技术生成

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

介绍

摘要

CNN架构通常对内存和计算资源的要求较高,这使得它们在硬件资源有限的嵌入式系统中难以实现。我们提出了一种用于构建轻量级深度神经网络的双卷积核(DualConv)方法。DualConv结合了 3 × 3 3 \times 3 3×3 1 × 1 1 \times 1 1×1的卷积核,同时处理相同的输入特征图通道,并利用组卷积技术高效地排列卷积滤波器。DualConv可以应用于任何CNN模型,例如用于图像分类的VGG-16和ResNet-50,用于目标检测的YOLO和R-CNN,或

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值