YOLO目标检测创新改进与实战案例专栏
专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLO基础解析+创新改进+实战案例
前言
在介绍YOLOv8中的各种Iou之前,我们先来了解了解目标检测中的损失函数。
目标检测模型通常包含两类损失函数:类别损失(分类)和位置损失(回归)。这两类损失函数用于检测模型的最后一部分,根据模型的输出(类别和位置)以及实际标注框(类别和位置),分别计算类别损失和位置损失。
类别损失(Classification Loss)
类别损失用于衡量预测的类别概率分布与真实类别标签之间的差异。常见的类别损失函数包括:
-
交叉熵损失(Cross-Entropy Loss):
- 这是使用最广泛的分类损失函数,特别适用于多分类问题。
- 公式如下:
Cross-Entropy = − 1 N ∑ i = 1 N ∑ c = 1 C y i c log ( y ^ i
本文深入探讨了YOLOv8目标检测模型中涉及的各类IoU损失函数,包括IoU Loss、GIoU Loss、DIoU Loss和CIoU Loss的计算公式、优缺点及应用场景。通过示例代码展示了这些损失函数在实际应用中的计算过程,并讲解了如何在YOLOv8中切换不同的损失函数。
订阅专栏 解锁全文
2369

被折叠的 条评论
为什么被折叠?



