【YOLOv8改进-损失函数】 YOLOv8自带损失函数CIoU / DIoU / GIoU 详解,以及如何切换损失函数

本文深入探讨了YOLOv8目标检测模型中涉及的各类IoU损失函数,包括IoU Loss、GIoU Loss、DIoU Loss和CIoU Loss的计算公式、优缺点及应用场景。通过示例代码展示了这些损失函数在实际应用中的计算过程,并讲解了如何在YOLOv8中切换不同的损失函数。
摘要由CSDN通过智能技术生成

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

前言

在介绍YOLOv8中的各种Iou之前,我们先来了解了解目标检测中的损失函数。

目标检测模型通常包含两类损失函数:类别损失(分类)和位置损失(回归)。这两类损失函数用于检测模型的最后一部分,根据模型的输出(类别和位置)以及实际标注框(类别和位置),分别计算类别损失和位置损失。

类别损失(Classification Loss)

类别损失用于衡量预测的类别概率分布与真实类别标签之间的差异。常见的类别损失函数包括:

  1. 交叉熵损失(Cross-Entropy Loss)

    • 这是使用最广泛的分类损失函数,特别适用于多分类问题。
    • 公式如下:
      Cross-Entropy = − 1 N ∑ i = 1 N ∑ c = 1 C y i c log ⁡ ( y ^ i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值