【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构

YOLOv8目标检测创新改进与实战案例专栏

专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv8基础解析+创新改进+实战案例

介绍

image-20240613151657343

摘要

在ShuffleNet v2的文章中作者指出现在普遍采用的FLOPs评估模型性能是非常不合理的,因为一批样本的训练时间除了看FLOPs,还有很多过程需要消耗时间,例如文件IO,内存读取,GPU执行效率等等。作者从内存消耗成本,GPU并行性两个方向分析了模型可能带来的非FLOPs的行动损耗,进而设计了更加高效的ShuffleNet v2。ShuffleNet v2的架构和DenseNet[4]有异曲同工之妙,而且其速度和精度都要优于DenseNet。

文章链接

论文地址:论文地址

代码地址代码地址

参考代码代码地址

基本原理

ShuffleNet V2是一种新颖的卷积神经网络(CNN)架构,旨在实现高效和准确的图像分类和目标检测任务。

  1. 构建模块:ShuffleNet V2的架构由构建模块组成,这些模块被堆叠起来构建整个网络。这些构建模块被设计为高效,允许使用更多的特征通道和更大的网络容量[T2]。

  2. 空间下采样:在ShuffleNet V2中,通过修改单元并将输出通道数量加倍来实现空间下采样。这种修改增强了网络的效率,同时保持准确性[T2]。

  3. 感受野增强:为了改善ShuffleNet V2在检测任务上的性能,通过在每个构建模块的逐点卷积之前引入额外的3x3深度卷积来扩大网络的感受野。这种增强被标记为ShuffleNet V2*,可以在几乎不增加计算成本的情况下提高准确性[T1]。

ShuffleNet v2结构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值