【YOLOv10改进 - 卷积Conv】DCNv4: 可变形卷积,动态与稀疏操作高效融合的创新算子

66 篇文章 8 订阅 ¥99.90 ¥299.90

YOLOv10目标检测创新改进与实战案例专栏

改进目录: YOLOv10有效改进系列及项目实战目录:卷积,主干 注意力,检测头等创新机制

专栏链接: YOLOv10 创新改进有效涨点

介绍

image-20240702104941102

摘要

我们介绍了可变形卷积 v4(DCNv4),这是一种设计用于广泛视觉应用的高效和有效的算子。DCNv4通过两个关键增强来解决其前身 DCNv3 的限制:1. 在空间聚合中移除了softmax标准化,以增强其动态特性和表达能力;2. 优化内存访问,减少冗余操作以加快速度。这些改进使得DCNv4的收敛速度显著更快,处理速度大幅提升,前向速度比DCNv3提高了三倍以上。DCNv4在图像分类、实例和语义分割等各种任务中表现出色,特别是在图像生成领域。将DCNv4集成到潜在扩散模型中的U-Net等生成模型中,表现优于基线模型,突显了其增强生成模型的潜力。在实际应用中,将DCNv3替换为DCNv4在InternImage模型中创建FlashInternImage,速度提高高达80%,并进一步提升了性能,无需进一步修改。DCNv4在速度和效率上的进步,结合其在多样视觉任务中的稳健表现,显示出其作为未来视觉模型基础构建块的潜力。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

DCNv4是Deformable Convolution v4的简称,是一种高效的动态稀疏操作符。其技术原理主要包括以下几个方面:

  1. 内存访问优化:DCNv4通过优化内存访问,减少了冗余操作,提高了处理速度。通过减少不必要的内存访问请求,降低了内存访问成本,从而加速了操作的执行速度。

    具体的内存访问优化策略包括以下几个方面:

    • 多通道处理:DCNv4使用一线程处理多个通道,而不是每个线程处理单个通道。这样可以减少加载采样偏移和聚合权重数值的内存访问请求,从而节省了内存访问成本。

    • 减少冗余计算:通过重复使用双线性插值系数等方式,减少了一些冗余计算,节省了时间。这些优化虽然在单次操作中节省的时间可能不多,但在大规模操作中可以积累成显著的效率提升。

    • 向量化加载/存储:采用向量化加载/存储操作,可以减少每个线程的工作量,从而加速GPU内核的执行速度。通过优化数据加载和存储方式,提高了操作的执行效率。

    • 使用半精度数据类型:DCNv4采用半精度数据类型,减少了内核需要读写的字节数,提高了数据吞吐量。这样可以进一步增加数据传输速

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值