YOLOv10目标检测创新改进与实战案例专栏
改进目录: YOLOv10有效改进系列及项目实战目录:卷积,主干 注意力,检测头等创新机制
专栏链接: YOLOv10 创新改进有效涨点
介绍

摘要
边界框回归(BBR)是目标检测中的核心任务之一,BBR损失函数显著影响其性能。然而,我们观察到现有基于IoU的损失函数存在不合理的惩罚因子,导致锚框在回归过程中扩展,并且显著减慢了收敛速度。为解决这一问题,我们深入分析了锚框扩大的原因。为此,我们提出了一种Powerful-IoU(PIoU)损失函数,结合了目标尺寸自适应惩罚因子和基于锚框质量的梯度调整函数。PIoU损失引导锚框沿着高效路径进行回归,比现有基于IoU的损失函数实现了更快的收敛。此外,我们探索了聚焦机制,并引入了与PIoU结合的非单调注意力层,形成了新的损失函数PIoU v2。PIoU v2损失增强了对中等质量锚框的聚焦能力。通过将PIoU v2集成到诸如YOLOv8和DINO等流行的目标检测器中,我们在MS COCO和PASCAL VOC数据集上提高了平均精度(AP),改进了性能,验证了我们提出的改进策略的有效性。
文章链接
论文地址:论文地址
代码地址:代码地址
基本原理
Powerful-IoU (PIoU) loss是一种用于目标检测中bounding box回归的损失函数,旨在解决anchor box在回归过程中膨胀的问题,并提供更快的收敛速度。以下是关于PIoU以及PIoU v2的详细介绍:
-
PIoU:
- 动机:PIoU的设计初衷是解决现有IoU-based损失函数存在的问题,如anchor box膨胀、收敛速度慢等。通过引入适应目标大小的惩罚因子和非单调的注意力机制,PIoU旨在提高回归的效率和准确性
订阅专栏 解锁全文
835

被折叠的 条评论
为什么被折叠?



