YOLO目标检测创新改进与实战案例专栏
专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLO基础解析+创新改进+实战案例
介绍

摘要
摘要:我们介绍了最新一代的MobileNets,称为MobileNetV4(MNv4),其架构设计在移动设备上具有通用的高效性。核心是我们引入了通用倒置瓶颈(UIB)搜索模块,这是一种统一且灵活的结构,融合了倒置瓶颈(IB)、ConvNext、前馈网络(FFN)以及一种新颖的额外深度可分离(ExtraDW)变体。除了UIB,我们还介绍了Mobile MQA,一种专为移动加速器设计的注意力模块,提供显著的39%速度提升。我们还引入了一种优化的神经架构搜索(NAS)配方,提高了MNv4的搜索效率。UIB、Mobile MQA和改进的NAS配方的整合,产生了一套新的MNv4模型,这些模型在移动CPU、DSP、GPU以及专用加速器(如Apple Neural Engine和Google Pixel EdgeTPU)上大多达到了帕累托最优,这是其他任何测试模型都不具备的特点。最后,为了进一步提高准确性,我们引入了一种新颖的蒸馏技术。在这种技术的增强下,我们的MNv4-Hybrid-Large模型在ImageNet-1K上达到了87%的准确率,在Pixel 8 EdgeTPU上的运行时间仅为3.8毫秒。
文章链接
论文地址:论文地址
代码地址:代码地址
代码地址:代码地址
基本原理
MobileNetV4是MobileNet系列的最新一代,旨在为移动设备提供高效的架构设计。MobileNetV4引入了Universal Inverted Bottleneck和Mobile MQA层,并结合改进的NAS(神经架构搜索)方法。通过这些创新设计和优化技术,MobileNetV4在Pixel 8 EdgeTPU上实现了87%的ImageNet-1K准确率,同时延迟仅为3.8ms,推动了移动计算机视觉的最新发展。
-
Un
订阅专栏 解锁全文
3352

被折叠的 条评论
为什么被折叠?



