【YOLOv8改进- Backbone主干】2024最新轻量化网络MobileNetV4替换YoloV8的BackBone

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

介绍

image-20240711225315182

摘要

摘要:我们介绍了最新一代的MobileNets,称为MobileNetV4(MNv4),其架构设计在移动设备上具有通用的高效性。核心是我们引入了通用倒置瓶颈(UIB)搜索模块,这是一种统一且灵活的结构,融合了倒置瓶颈(IB)、ConvNext、前馈网络(FFN)以及一种新颖的额外深度可分离(ExtraDW)变体。除了UIB,我们还介绍了Mobile MQA,一种专为移动加速器设计的注意力模块,提供显著的39%速度提升。我们还引入了一种优化的神经架构搜索(NAS)配方,提高了MNv4的搜索效率。UIB、Mobile MQA和改进的NAS配方的整合,产生了一套新的MNv4模型,这些模型在移动CPU、DSP、GPU以及专用加速器(如Apple Neural Engine和Google Pixel EdgeTPU)上大多达到了帕累托最优,这是其他任何测试模型都不具备的特点。最后,为了进一步提高准确性,我们引入了一种新颖的蒸馏技术。在这种技术的增强下,我们的MNv4-Hybrid-Large模型在ImageNet-1K上达到了87%的准确率,在Pixel 8 EdgeTPU上的运行时间仅为3.8毫秒。

文章链接

论文地址:论文地址

代码地址:代码地址

代码地址:代码地址

基本原理

MobileNetV4是MobileNet系列的最新一代,旨在为移动设备提供高效的架构设计。MobileNetV4引入了Universal Inverted Bottleneck和Mobile MQA层,并结合改进的NAS(神经架构搜索)方法。通过这些创新设计和优化技术,MobileNetV4在Pixel 8 EdgeTPU上实现了87%的ImageNet-1K准确率,同时延迟仅为3.8ms,推动了移动计算机视觉的最新发展。

  1. Un

轻量化主干网络YOLO(You Only Look Once)是一种用于目标检测神经网络模型。与传统的目标检测方法相比,YOLO可以实现实时高效的目标检测轻量化主干网络适用于移动设备和嵌入式设备等计算资源有限的场景。为了减少网络模型的参数数量和计算复杂度,轻量化主干网络采用了一系列优化策略。 首先,轻量化主干网络采用了深度可分离卷积层(Depthwise Separable Convolution)。深度可分离卷积层将卷积层分为深度卷积和逐点卷积两个步骤,分别处理通道间的信息和空间上的信息。这种方式有效减少了模型的参数数量和计算复杂度。 其次,轻量化主干网络使用了残差模块(Residual Module)。残差模块通过引入跳跃连接,将输入与输出相加,使得网络模型能够更好地学习残差信息。这种结构可以提升网络的性能,并减少网络的参数数量。 此外,轻量化主干网络还使用了空间金字塔池化模块(Spatial Pyramid Pooling)。空间金字塔池化模块可以从不同尺度上提取特征,具有多尺度感受野,在目标检测任务中起到了关键作用。 总体来说,轻量化主干网络采用了深度可分离卷积、残差模块和空间金字塔池化等技术,以减少网络的参数数量和计算复杂度,同时保持高准确率和实时的目标检测能力。它在移动设备和嵌入式设备等场景中具有较好的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值