【YOLOv8改进 - 注意力机制】DoubleAttention: 双重注意力机制,全局特征聚合和分配

YOLOv8目标检测创新改进与实战案例专栏

专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv8基础解析+创新改进+实战案例

介绍

image-20240716222919922

摘要

学习捕捉远程关系是图像/视频识别的基础。现有的CNN模型通常依赖于增加深度来建模这种关系,这效率极低。在这项工作中,我们提出了“双重注意力块”,这是一个新颖的组件,它从输入图像/视频的整个时空空间聚合和传播有用的全局特征,使后续的卷积层能够高效地访问整个空间的特征。该组件设计了两个步骤的双重注意力机制,第一步通过二阶注意力池化将整个空间的特征聚集到一个紧凑集,第二步通过另一个注意力自适应地选择和分配特征到每个位置。提出的双重注意力块易于采用,可以方便地插入现有的深度神经网络中。我们进行了广泛的消融研究和实验,以评估其在图像和视频识别任务中的性能。在图像识别任务中,配备了我们双重注意力块的ResNet-50在ImageNet-1k数据集上以超过40%的参数量和更少的FLOPs超越了更大规模的ResNet-152架构。在动作识别任务中,我们提出的模型在Kinetics和UCF-101数据集上实现了最新的最先进结果,效率显著高于最近的工作。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

双重注意力机制(Double Attention)的详细介绍及其技术原理

技术原理

双重注意力机制(Double Attention Mechanism)由两个主要步骤组成:特征聚合(Feature Gathering)和特征分配(Feature Distribution)。这一机制旨在有效地捕获输入数据中全局特征,从而使后续的卷积层能够更高效地访问这些特征。

  1. 特征聚合(Feature Gathering)

    • 输入张量 X ∈ R c × d × h ×
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值