【YOLOv8改进 - 注意力机制】GC Block (GlobalContext): 全局上下文块,高效捕获特征图中的全局依赖关系

YOLOv8目标检测创新改进与实战案例专栏

专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv8基础解析+创新改进+实战案例

介绍

image-20240718164344690

摘要

非局部网络(NLNet)通过聚合特定查询位置的全局上下文,为捕捉长程依赖性提供了开创性的方法。然而,通过严格的实证分析,我们发现非局部网络在同一图像的不同查询位置所建模的全局上下文几乎相同。在本文中,我们利用这一发现,创建了一个基于与查询无关公式的简化网络,该网络在保持NLNet准确性的同时,大幅减少了计算量。我们进一步观察到,这种简化设计在结构上与挤压-激励网络(SENet)相似。因此,我们将它们统一到一个三步通用框架中,用于全局上下文建模。在这一通用框架内,我们设计了一个更好的实例,称为全局上下文(GC)块,它轻量化且能有效建模全局上下文。由于其轻量化特性,我们可以将其应用于骨干网络的多个层次,构建一个全局上下文网络(GCNet),该网络在各种识别任务的主要基准测试中普遍优于简化的NLNet和SENet。代码和配置发布在:https://github.com/xvjiarui/GCNet。

文章链接

论文地址:论文地址

代码地址:代码地址

参考代码代码地址

基本原理

GC Block 详细介绍

全局上下文块(Global Context Block, GC Block)是Global Context Network(GCNet)的核心组件,设计用来高效捕获特征图中的全局依赖关系。它结合了非局部网络(NLNet)和挤压-激励网络(SENet)的优势,具体结构如下:

1. 上下文建模模块(Context Modeling Module)

这个模块的主要目的是聚合所有位置的特征形成全局上下文特征,具体步骤如下:

  • 输入特征图:假设输入特征图为 X ∈ R C ×
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值