YOLOv8目标检测创新改进与实战案例专栏
专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLOv8基础解析+创新改进+实战案例
介绍

摘要
我们提出了一种简单而高效的无锚实例分割方法,称为CenterMask,它在无锚单阶段目标检测器(FCOS [33])中添加了一个新颖的空间注意力引导掩码(SAG-Mask)分支,类似于Mask R-CNN [9]。在FCOS目标检测器中插入SAG-Mask分支,该分支使用空间注意力图在每个检测框上预测分割掩码,从而有助于关注有用的像素并抑制噪声。我们还提出了改进的骨干网络VoVNetV2,并采用了两种有效策略:(1)残差连接以缓解较大VoVNet [19]的优化问题;(2)有效的挤压-激励(eSE)处理原始SE的通道信息丢失问题。结合SAG-Mask和VoVNetV2,我们设计了针对大模型和小模型的CenterMask和CenterMask-Lite。使用相同的ResNet-101-FPN骨干网络,CenterMask达到了38.3%的AP,超过了所有以前的最先进方法,同时速度更快。CenterMask-Lite在Titan Xp上以超过35fps的速度也大幅超越了最先进的方法。我们希望CenterMask和VoVNetV2可以分别作为实时实例分割和各种视觉任务的骨干网络的坚实基准。代码可在https://github.com/youngwanLEE/CenterMask获取。
文章链接
论文地址:论文地址
代码地址:代码地址
基本原理
EffectiveSE (Effective Squeeze-Excitation) 是一种改进的通道注意力模块,其目的是在保持模型性能的同时减少计算复杂性和信息丢失。它基于原始的 Squeeze-Excitation (SE) 模块,但通过一些关键的改进来提高效率。以下是对 EffectiveSE 及其技术原理的详细介绍:
背景
Squeeze-Excitation 网络(SE-Net)是一种通道注意力机制,通过建模特征图通道之间的相互依赖性来增强模型的表现。SE 模块的主要步骤包括:
- Squeeze 操作:对每个通道进行全局平均池化,生成通道描述符。
- Excitation 操作:通过两个全连接层和 ReLU 激活函数来重新计算每个通道的权重。
- Scale 操作:将计算得到的权重应用到原始特征图的每个通道上。
虽然 SE-Net 提高了网络性能,但其两个全连接层的设计带来了额外的计算开销,并且在通道维度上进行了压缩和扩展,可能导致信息丢失。
EffectiveSE 的技术原理
EffectiveSE (eSE) 模块通过简化 SE 模块的结构来提高效率,同时避免信息丢失。具体改进包括:
- 去除维度压缩:原始 SE 模块使用两个全连接层来压缩和扩展通道维度,这可能导致信息丢失。eSE 模块使用单个全连接层,保持通道维度不变,从而避免了这种信息丢失。
- 更高效的计算:通过简化网络结构,减少计算量,提升模型的整体效率。
具体实现
eSE 的具体实现步骤如下:
- 全局平均池化 (Global Average Pooling):对输入特征图 $ X$ 进行全局平均池化,生成一个通道描述符 F g a p ( X ) F_{gap}(X) Fgap(X)。
- 全连接层 (Fully Connected Layer):通过一个全连接层
W
C
W_C
WC 对通道描述符进行线性变换,并应用 sigmoid 激活函数,生成通道注意力权重
A
e
S
E
A_{eSE}
AeSE:
A e S E ( X ) = σ ( W C ( F g a p ( X ) ) ) A_{eSE}(X) = \sigma(W_C(F_{gap}(X))) AeSE(X)=σ(WC(Fgap(X))) - 通道重标定 (Channel Recalibration):将通道注意力权重 $ A_{eSE}$ 应用于输入特征图 $ X的每个通道上,生成加权后的特征图
X
r
e
f
i
n
e
X_{refine}
Xrefine:
X r e f i n e = A e S E ( X ) ⊗ X X_{refine} = A_{eSE}(X) \otimes X Xrefine=AeSE(X)⊗X
其中, ⊗ \otimes ⊗ 表示元素级别的乘法。
优势
- 减少信息丢失:通过保持通道维度不变,避免了由于维度压缩带来的信息丢失。
- 计算效率高:简化了网络结构,减少了计算量,提高了模型的整体效率。
- 性能提升:在保持或提高模型准确率的同时,显著减少了计算开销。
实验结果
实验表明,应用 eSE 模块的网络(如 VoVNetV2)在各种视觉任务中均表现出色。例如,使用 eSE 模块的 VoVNetV2 相较于原始的 SE 模块和其他骨干网络在速度和准确率上都表现更好。
总体而言,EffectiveSE 通过简化结构和避免信息丢失,提供了一种高效的通道注意力机制,显著提升了模型的性能和计算效率。
核心代码
import torch
from torch import nn as nn
from timm.models.layers.create_act import create_act_layer
class EffectiveSEModule(nn.Module):
def __init__(self, channels, add_maxpool=False, gate_layer='hard_sigmoid'):
super(EffectiveSEModule, self).__init__()
self.add_maxpool = add_maxpool
self.fc = nn.Conv2d(channels, channels, kernel_size=1, padding=0)
self.gate = create_act_layer(gate_layer)
def forward(self, x):
x_se = x.mean((2, 3), keepdim=True)
if self.add_maxpool:
# experimental codepath, may remove or change
x_se = 0.5 * x_se + 0.5 * x.amax((2, 3), keepdim=True)
x_se = self.fc(x_se)
return x * self.gate(x_se)
if __name__ == '__main__':
input=torch.randn(50,512,7,7)
Ese = EffectiveSEModule(512)
output=Ese(input)
print(output.shape)
下载YoloV8代码
直接下载

Git Clone
git clone https://github.com/ultralytics/ultralytics
安装环境
进入代码根目录并安装依赖。


pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
在最新版本中,官方已经废弃了requirements.txt文件,转而将所有必要的代码和依赖整合进了ultralytics包中。因此,用户只需安装这个单一的ultralytics库,就能获得所需的全部功能和环境依赖。
pip install ultralytics
引入代码
在根目录下的ultralytics/nn/目录,新建一个 attention目录,然后新建一个以 EffectiveSE为文件名的py文件, 把代码拷贝进去。
代码参考:https://blog.csdn.net/DM_zx/article/details/132321429
import torch
import torch.nn as nn
from timm.layers.create_act import create_act_layer
class EffectiveSE(nn.Module):
def __init__(self, channels, add_maxpool=False, gate_layer="hard_sigmoid"):
super(EffectiveSE, self).__init__()
self.add_maxpool = add_maxpool
self.fc = nn.Conv2d(channels, channels, kernel_size=1, padding=0)
self.gate = create_act_layer(gate_layer)
def forward(self, x):
x_se = x.mean((2, 3), keepdim=True)
if self.add_maxpool:
# experimental codepath, may remove or change
x_se = 0.5 * x_se + 0.5 * x.amax((2, 3), keepdim=True)
x_se = self.fc(x_se)
return x * self.gate(x_se)
注册
在ultralytics/nn/tasks.py中进行如下操作:
步骤1:
from ultralytics.nn.attention.EffectiveSE import EffectiveSE
步骤2
修改def parse_model(d, ch, verbose=True):
elif m is EffectiveSE:
c1 = ch[f]
args = [c1, *args[0:]]

配置yolov8_EffectiveSE.yaml
ultralytics/cfg/models/v8/yolov8_EffectiveSE.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024]
s: [0.33, 0.50, 1024]
m: [0.67, 0.75, 768]
l: [1.00, 1.00, 512]
x: [1.00, 1.25, 512]
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, EffectiveSE, []] #16
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 19 (P4/16-medium)
- [-1, 1, EffectiveSE, []] #20
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 23 (P5/32-large)
- [-1, 1, EffectiveSE, []] #24
- [[16, 20, 24], 1, Detect, [nc]] # Detect(P3, P4, P5)
实验
脚本
import os
from ultralytics import YOLO
yaml = 'ultralytics/cfg/models/v8/yolov8_EffectiveSE.yaml'
model = YOLO(yaml)
model.info()
if __name__ == "__main__":
results = model.train(data='coco128.yaml',
name='yolov8_EffectiveSE',
epochs=10,
workers=8,
batch=1)
结果

文章目录
826

被折叠的 条评论
为什么被折叠?



