【YOLO11改进 - Backbone主干】 ConvNeXtV2:全卷积掩码自编码器网络,性能不输Transformer 【YOLO11改进 - Backbone主干】 ConvNeXtV2:全卷积掩码自编码器网络,性能不输Transformer
【YOLO11改进 - 特征融合】C3k2融合OREPA(Online Convolutional Re-parameterization):在线卷积重参数化 【YOLO11改进 - 特征融合】C3k2融合OREPA(Online Convolutional Re-parameterization):在线卷积重参数化
手把手教你搭建Windows+YOLO11+CUDA环境,以EMA注意演示如何改进YOLO11, 训练自定义数据集,小白也能看得懂的! 【YOLO11改进- 环境搭建】手把手教你搭建Windows+YOLO11+CUDA环境,训练自定义数据集,以EMA注意演示如何改进YOLO11。小白也能看得懂的!
【YOLO11改进 - 注意力机制】添加YOLO-Face提出的SEAM注意力,提高遮挡情况下的特征学习能力 【YOLO11改进 - 注意力机制】添加YOLO-Face提出的SEAM注意力,提高遮挡情况下的特征学习能力
【YOLO11改进 - 检测头】Detect-Dyhead检测头:带有注意力机制检测头,较低参数数量的同时显着增强特征表示能力 【YOLO11改进 - 检测头】Detect-Dyhead检测头:带有注意力机制检测头,较低参数数量的同时显着增强特征表示能力
【YOLO11改进 - 检测头】Detect_LSCD检测头:量化的检测头,进一步提升模型的检测效率和精度 【YOLO11改进 - 检测头】Detect_LSCD检测头:量化的检测头,进一步提升模型的检测效率和精度
华为OD机试E卷 - 增强的strstr(Java & Python& JS & C++ & C ) 华为OD机试E卷 - 增强的strstr(Java & Python& JS & C++ & C )
华为OD机试E卷 - 最左侧冗余覆盖子串(Java & Python& JS & C++ & C ) 华为OD机试E卷 - 最左侧冗余覆盖子串(Java & Python& JS & C++ & C )
【YOLO11改进 - 注意力机制】SOCA:可训练的二阶通道注意力,自适应地重新缩放通道特征,以获得更具辨别性的表示 【YOLO11改进 - 注意力机制】SOCA:可训练的二阶通道注意力,自适应地重新缩放通道特征,以获得更具辨别性的表示
【YOLO11改进 - 特征融合】C3k2融合MogaBlock,结合多种注意力机制和卷积操作,增强网络的特征提取能力 【YOLO11改进 - 特征融合】C3k2融合MogaBlock,结合多通过尽可能全局地对内核进行语境化,现代卷积网络在计算机视觉任务中展现出了巨大的潜力。然而,深度神经网络 (DNN) 中多阶博弈论交互的最新进展揭示了现代卷积网络的表示瓶颈,其中表达性交互尚未通过增加的内核大小进行有效编码。为了应对这一挑战,我们提出了一种新的现代卷积网络系列,称为 MogaNet,用于在纯基于卷积网络的模型中进行判别性视觉表示学习,具有良好的复杂性-性能权衡。MogaNet 将概念上简单但有效的卷积和门控聚合封装到一个
【YOLO11改进 - 卷积Conv】融合MogaNet中的MogaSubBlock:Moga Block + CA block 【YOLO11改进 - 卷积Conv】融合MogaNet中的MogaSubBlock:Moga Block + CA block
【YOLO11改进 - 卷积Conv】融合MogaNet中的Multi-Order Gated Aggregation(多阶门控聚合模块) 【YOLO11改进 - 卷积Conv】融合MogaNet中的Multi-Order Gated Aggregation(多阶门控聚合模块)