- 博客(1493)
- 资源 (3)
- 收藏
- 关注
原创 手把手教你搭建Windows+YOLO11+CUDA环境,以EMA注意演示如何改进YOLO11, 训练自定义数据集,小白也能看得懂的!
【YOLO11改进- 环境搭建】手把手教你搭建Windows+YOLO11+CUDA环境,训练自定义数据集,以EMA注意演示如何改进YOLO11。小白也能看得懂的!
2024-11-09 11:21:13
605
6
原创 YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新110+)
本专栏提供详细的 YOLO11 教程,包括基础知识、源码解析、入门实践、算法改进和项目实战,适合发表YOLO11 学习者订阅。内容包含 100+多篇独家改进机制,适合发表论文,评分高达 96 分。订阅者将获得一键运行的改进文件及答疑交流群支持。 使用服务器的同学还可以私聊获取搭建好的运行环境。
2024-10-29 17:19:34
8364
3
原创 YOLOv10有效改进系列及项目实战目录:卷积,主干 注意力,检测头等创新机制
本专栏不仅关注最新的研究成果,还会持续更新和回顾那些经过实践验证的改进机制。包括:注意力机制替换、卷积优化、检测头创新、损失与IOU优化、block优化与多层特征融合、轻量级网络设计等改进思路,帮助您实现全方位的创新。每篇文章都附带详细的步骤和源码,便于您的论文写作和项目实现。每周发布3-10篇最新创新机制文章,确保时刻掌握前沿内容。
2024-07-13 20:00:21
1409
2
原创 YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
大家好!欢迎阅读本专栏。本专栏涵盖了YOLO8中C2f、主干网络、检测头、注意力机制、Neck等多种结构的创新,同时也包括了 YOLO相关的基础知识以及相关项目。
2024-05-06 10:20:34
30229
10
原创 【YOLO11改进 - Backbone主干】VanillaNet:华为诺亚极简的神经网络
【YOLO11改进 - Backbone主干】VanillaNet:华为诺亚极简的神经网络
2024-11-10 21:28:57
24
原创 【YOLO11改进 - 特征融合】 AFPN :渐进特征金字塔网络,YOLO的最佳搭档
【YOLO11改进 - 特征融合】 AFPN :渐进特征金字塔网络,YOLO的最佳搭档
2024-11-10 21:06:02
20
原创 【YOLO11改进 - Backbone主干】 ConvNeXtV2:全卷积掩码自编码器网络,性能不输Transformer
【YOLO11改进 - Backbone主干】 ConvNeXtV2:全卷积掩码自编码器网络,性能不输Transformer
2024-11-10 19:32:04
18
原创 【YOLO11改进 - 特征融合】C3k2融合OREPA(Online Convolutional Re-parameterization):在线卷积重参数化
【YOLO11改进 - 特征融合】C3k2融合OREPA(Online Convolutional Re-parameterization):在线卷积重参数化
2024-11-10 19:01:51
13
原创 华为OD机试E卷 - 最长连续子序列(Java & Python& JS & C++ & C )
华为OD机试E卷 - 最长连续子序列(Java & Python& JS & C++ & C )
2024-11-09 09:18:01
14
原创 华为OD机试E卷 - 连续字母长度(Java & Python& JS & C++ & C )
华为OD机试E卷 - 连续字母长度(Java & Python& JS & C++ & C )
2024-11-09 09:14:32
12
原创 【YOLO11改进 - 注意力机制】添加YOLO-Face提出的SEAM注意力,提高遮挡情况下的特征学习能力
【YOLO11改进 - 注意力机制】添加YOLO-Face提出的SEAM注意力,提高遮挡情况下的特征学习能力
2024-11-08 15:53:40
88
原创 【YOLO11改进 - 检测头】Detect-Dyhead检测头:带有注意力机制检测头,较低参数数量的同时显着增强特征表示能力
【YOLO11改进 - 检测头】Detect-Dyhead检测头:带有注意力机制检测头,较低参数数量的同时显着增强特征表示能力
2024-11-08 15:07:02
117
原创 【YOLO11改进 - 检测头】Detect_LSCD检测头:量化的检测头,进一步提升模型的检测效率和精度
【YOLO11改进 - 检测头】Detect_LSCD检测头:量化的检测头,进一步提升模型的检测效率和精度
2024-11-08 13:37:15
43
原创 华为OD机试E卷 - 报文响应时间(Java & Python& JS & C++ & C )
华为OD机试E卷 - 报文响应时间(Java & Python& JS & C++ & C )
2024-11-08 12:39:39
13
原创 华为OD机试E卷 - 增强的strstr(Java & Python& JS & C++ & C )
华为OD机试E卷 - 增强的strstr(Java & Python& JS & C++ & C )
2024-11-08 12:38:55
8
原创 华为OD机试E卷 - 最左侧冗余覆盖子串(Java & Python& JS & C++ & C )
华为OD机试E卷 - 最左侧冗余覆盖子串(Java & Python& JS & C++ & C )
2024-11-08 12:38:02
8
原创 【YOLO11改进 - 注意力机制】SOCA:可训练的二阶通道注意力,自适应地重新缩放通道特征,以获得更具辨别性的表示
【YOLO11改进 - 注意力机制】SOCA:可训练的二阶通道注意力,自适应地重新缩放通道特征,以获得更具辨别性的表示
2024-11-07 23:11:24
18
原创 【YOLO11改进 - 特征融合】C3k2融合iRMB: 倒置残差移动块,即插即用的轻量注意力
【YOLO11改进 - 特征融合】C3k2融合iRMB: 倒置残差移动块,即插即用的轻量注意力
2024-11-07 22:51:15
15
原创 【YOLO11改进 - 特征融合】C3k2融合MogaBlock,结合多种注意力机制和卷积操作,增强网络的特征提取能力
【YOLO11改进 - 特征融合】C3k2融合MogaBlock,结合多通过尽可能全局地对内核进行语境化,现代卷积网络在计算机视觉任务中展现出了巨大的潜力。然而,深度神经网络 (DNN) 中多阶博弈论交互的最新进展揭示了现代卷积网络的表示瓶颈,其中表达性交互尚未通过增加的内核大小进行有效编码。为了应对这一挑战,我们提出了一种新的现代卷积网络系列,称为 MogaNet,用于在纯基于卷积网络的模型中进行判别性视觉表示学习,具有良好的复杂性-性能权衡。MogaNet 将概念上简单但有效的卷积和门控聚合封装到一个
2024-11-07 22:18:21
19
原创 【YOLO11改进 - 卷积Conv】融合MogaNet中的MogaSubBlock:Moga Block + CA block
【YOLO11改进 - 卷积Conv】融合MogaNet中的MogaSubBlock:Moga Block + CA block
2024-11-06 22:23:28
214
原创 【YOLO11改进 - 卷积Conv】融合MogaNet中的CA block(多通道聚合模块)
【YOLO11改进 - 卷积Conv】融合MogaNet中的CA block(多通道聚合模块)
2024-11-06 22:11:46
374
原创 【YOLO11改进 - 卷积Conv】融合MogaNet中的Multi-Order Gated Aggregation(多阶门控聚合模块)
【YOLO11改进 - 卷积Conv】融合MogaNet中的Multi-Order Gated Aggregation(多阶门控聚合模块)
2024-11-06 22:03:13
113
原创 【YOLO11改进 - 特征融合】C3k2融合YOLO-MIF中新的重参数化模块(DeepDBB):深度多样分支模块
【YOLO11改进 - 特征融合】C3k2融合YOLO-MIF中新的重参数化模块(DeepDBB):深度多样分支模块
2024-11-06 16:10:30
19
原创 【YOLO11改进 - 特征融合】C3k2融合YOLO-MIF中新的新的重参数化模块(WDBB):宽度多样分支模块
【YOLO11改进 - 特征融合】C3k2融合YOLO-MIF中新的新的重参数化模块(WDBB):宽度多样分支模块
2024-11-06 15:56:54
20
原创 【YOLO11改进 - 卷积Conv 】 LDConv(Linear deformable convoluton):线性可变形卷积
【YOLO11改进 - 卷积Conv 】 LDConv(Linear deformable convoluton):线性可变形卷积
2024-11-06 14:53:14
22
原创 【YOLO11改进 - 特征融合】C3k2融合DEConv(Detail-Enhanced Convolution):细节增强卷积,增强特征提取能力
【YOLO11改进 - 特征融合】C3k2融合DEConv(Detail-Enhanced Convolution):细节增强卷积,增强特征提取能力
2024-11-06 14:24:39
16
原创 【YOLO11改进 - 注意力机制】CGAFusion(Content-Guided Attention): 内容引导注意力特征融合
【YOLO11改进 - 注意力机制】CGAFusion(Content-Guided Attention): 内容引导注意力特征融合
2024-11-06 13:56:52
20
原创 【YOLO11改进 - 特征融合】C3k2融合ODConv(Omni-Dimensional Dynamic Convolution):全维度动态卷积
【YOLO11改进 - 特征融合】C3k2融合ODConv(Omni-Dimensional Dynamic Convolution):全维度动态卷积
2024-11-05 22:36:15
24
原创 【YOLO11改进 - 特征融合】ASF-YOLO:SSFF融合+TPE编码+CPAM注意力,提高检测和分割能力
【YOLO11改进 - 特征融合】ASF-YOLO:SSFF融合+TPE编码+CPAM注意力,提高检测和分割能力
2024-11-05 22:09:23
19
原创 【YOLO11改进 - 特征融合】 GIRAFFEDET之GFPN :广义特征金字塔网络,高效地融合多尺度特征
【YOLO11改进 - 特征融合】 GIRAFFEDET之GFPN :广义特征金字塔网络,高效地融合多尺度特征
2024-11-05 21:55:03
28
原创 【YOLO11改进】SwinTransformer骨干网络: 基于位移窗口的层次化视觉变换器
【YOLO11改进】SwinTransformer骨干网络: 基于位移窗口的层次化视觉变换器
2024-11-05 21:41:47
13
原创 【YOLO11改进 - Backbone主干】FasterNet:基于PConv(部分卷积)的神经网络,提升精度与速度,降低参数量。
【YOLO11改进 - Backbone主干】FasterNet:基于PConv(部分卷积)的神经网络,提升精度与速度,降低参数量。
2024-11-05 13:36:32
35
原创 【YOLO11改进 - Backbone主干】微软 EfficientViT替换YOLO11的BackBone: 高效视觉transformer与级联组注意力,平衡速度与精度
【YOLO11改进 - Backbone主干】微软 EfficientViT替换YOLO11的BackBone: 高效视觉transformer与级联组注意力,平衡速度与精度
2024-11-04 22:47:44
29
原创 【YOLO11改进 - Backbone主干】2024最新轻量化网络MobileNetV4替换YOLO11的BackBone
【YOLO11改进 - Backbone主干】2024最新轻量化网络MobileNetV4替换YOLO11的BackBone
2024-11-04 21:45:03
31
原创 【YOLO11改进 - C3k2融合】C3k2融合DWRSeg二次创新C3k2_DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2融合DWRSeg二次创新C3k2_DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
2024-11-04 21:16:53
44
原创 【YOLO11改进 - C3k2融合】C3k2融合Deformable-LKA二次创新C3k2_DLKA:可变形大核注意力
【YOLO11改进 - C3k2融合】C3k2融合Deformable-LKA二次创新C3k2_DLKA:可变形大核注意力
2024-11-04 21:08:34
35
原创 【YOLO11改进 - C3k2融合】C3k2融合DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
2024-11-01 16:44:27
48
原创 【YOLO11改进- 多模块融合改进】GhostConv + ContextAggregation 幽灵卷积与上下文聚合模块融合改进,助力小目标高效涨点
【YOLO11改进- 多模块融合改进】GhostConv + ContextAggregation 幽灵卷积与上下文聚合模块融合改进,助力小目标高效涨点
2024-11-01 16:09:41
49
原创 【YOLO11改进 - C3k2融合】C3k2融合动态蛇形卷积(Dynamic Snake Convolution)用于管状结构分割任务
【YOLO11改进 - C3k2融合】C3k2融合动态蛇形卷积(Dynamic Snake Convolution)用于管状结构分割任务
2024-11-01 14:43:00
42
MCA: Multidimensional collaborative attention in deep convolutio
2024-02-21
泰坦尼克号幸存者数据集
2023-12-17
K最近邻(K-Nearest Neighbors,KNN) 最佳指南以及代码实战数据集- 糖尿病
2023-09-17
《混淆矩阵 最佳指南以及代码实战》 心脏数据集
2023-09-06
文章《【零基础学机器学习 10】随机森林算法最佳指南以及代码实战》 - 数据集
2023-07-24
asp.net通讯录管理系统课程设计
2023-02-26
企业网站模板、html模板网站
2022-11-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅