uva10791 - Minimum Sum LCM

本文介绍了一个关于质因数分解的问题及其解决方法,特别关注了几个特殊情况的处理方式,包括N等于1、N为素数、N只有一个质因子以及N为特定大素数时的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分析摘以为大神的::思路很清晰

分解质因子的一个题,将最小公倍数分解质因子,最小的和sum便为各个质因子的相应次方数之和。

此题难点在于几个特殊的情况的处理:

(1)当N = 1时,应输出2(1*1=1,sum=1+1=2);

(2)当N是素数的时候,输出N+1(N*1=N,sum=N+1);

(3)当只有单质因子时,sum=质因子相应次方+1;

(4)当N=2147483647时,它是一个素数,此时输出2147483648,但是它超过int范围,应考虑用long long。

代码如下:

#include <cstdio>
#include <cmath>
#include <cstring>
#define M 100010
bool prime[M];
void is_prime()
{
    int len = sqrt(M+0.5);
    memset(prime,0,sizeof(prime));
    for(int i = 2; i <= len; i++) if(prime[i]==0)
        for(int j = i*i; j < M; j+=i) prime[j] = 1;
}
int judge(int n)
{
    if(n<M) return !prime[n];
    int len = sqrt(n+0.5);
    for(int i = 2; i <= len; i++)
        if(n%i==0) return 0;
    return 1;
}
int main()
{
    int n, cas = 0;
    is_prime();
    while(scanf("%d",&n),n)
    {
        printf("Case %d: ",++cas);
        if(judge(n)) { printf("%lld\n",(long long)n+1); continue;}

        int len = (int)sqrt(n+0.5), num = 0, tt;
        long long ans = 0;
        for(int i = 2; i <= len; i++)
        {
            if(n%i) continue;
            num++;
            tt = 1;
            while(n%i==0)
            {
                tt*=i;
                n/=i;
            }
            ans+=tt;
        }
        if(num==1||n!=1) ans+=n;
        printf("%lld\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值