CF917C Pollywog
发现 x x x 是比较小的我们考虑直接状压。
之后发现 n n n 是比较大的考虑使用矩阵加速进行运算。
矩阵加速其实不一定只能使用加减,使用 min , max \min, \max min,max 也是可以的,具体来说需要满足一些性质。
我们不妨设这个两个运算符运算符是 ⊕ , ⊗ \oplus, \otimes ⊕,⊗。
显然对于我们矩阵乘法的定义,最终得到的矩阵 C ( i , j ) C(i, j) C(i,j) 肯定是通过 ( A i , 1 ⊗ B 1 , j ) ⊕ ( A i , 2 ⊗ B 2 , j ) ⊕ … (A_{i, 1} \otimes B_{1, j}) \oplus (A_{i, 2} \otimes B_{2, j}) \oplus \dots (Ai,1⊗B1,j)⊕(Ai,2⊗B2,j)⊕… 得到的。
我们进行矩阵加速需要满足结合律,也就是 ( A B ) C = A ( B C ) (AB)C = A(BC) (AB)C=A(BC) 我们直接拆开可以得到几个性质:
- ⊗ \otimes ⊗ 满足交换律,结合律
- ⊗ \otimes ⊗ 对于 ⊕ \oplus ⊕ 满足分配率,也就是说 A ⊗ ( B ⊕ C ) = ( A ⊗ B ) ⊕ ( A ⊗ C ) A \otimes(B \oplus C) = (A\otimes B) \oplus (A\otimes C ) A⊗(B⊕C)=(A⊗B)⊕(A⊗C)
显然对于 min , + \min, + min,+ 两个操作是满足这个的。
别忘记构造单位矩阵。
我们考虑直接进行矩阵加速即可。
但是发现直接状压所有的状态是不可能的,有 2 k 2^k 2k 种。我们考虑只状压 x x x 在内部的情况,因为外部同样可以推出。对于 x x x 在内部可以考虑对于 x = k 2 x = \dfrac{k}{2} x=2k 的情况,状态数最多只有 ( 8 4 ) = 70 \binom{8}{4} = 70 (48)=70 可以进行加速。
每次按照题目的意思对于最左边的进行转移,肯定是向右移动一个位置,暴力找即可。
如果对于状压的 k k k 最左边没有值,就直接转移不需要花费。
对于中间有若干个特殊石头的情况只是单纯来恶心的,就是分成 q q q 段分次转移,之后对于这些石头只需要将最左边位置有人的进行加贡献即可。
代码中状压最右边的一位实际上就是最左边的位置。
#include <bits/stdc++.h>
using namespace std;
//#define Fread
//#define Getmod
#ifdef Fread
char buf[1 << 21], *iS, *iT;
#define gc() (iS == iT ? (iT = (iS = buf) + fread (buf, 1, 1 << 21, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++)
#define getchar gc
#endif // Fread
template <typename T>
void r1(T &x) {
x = 0;
char c(getchar());
int f(1);
for(; c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
for(; '0' <= c && c <= '9';c = getchar()) x = (x * 10) + (c ^ 48);
x *= f;
}
template <typename T,typename... Args> inline void r1(T& t, Args&... args) {
r1(t); r1(args...);
}
//#define int long long
const int maxn = 2e5 + 5;
const int maxm = maxn << 1;
typedef long long ll;
int X, K, n, Q;
int tot;
const ll inf = 0x3f3f3f3f3f3f3f3f;
struct Matrix {
ll a[71][71];
Matrix(void) { memset(a, 0x3f, sizeof(a)); for(int i = 1; i <= 70; ++ i) a[i][i] = 0; }
Matrix operator * (const Matrix &z) const {
Matrix res;
for(int i = 1; i <= tot; ++ i) res.a[i][i] = inf;
for(int i = 1; i <= tot; ++ i) for(int j = 1; j <= tot; ++ j) {
for(int k = 1; k <= tot; ++ k) {
res.a[i][j] = min(res.a[i][j], a[i][k] + z.a[k][j]);
}
}
return res;
}
}tmp, F;
int id[maxn];
bool calc(int x) {
int sum(0);
for(int i = 1; i <= 8; ++ i) if((x >> (i - 1)) & 1) ++ sum;
return (sum == X);
}
struct Node {
int p; ll w;
int operator < (const Node &z) const {
return p < z.p;
}
}st[maxn];
ll c[maxn];
/*
... 1
the stone which more closed the right place is the first one
*/
void ksm(Matrix &a, Matrix x,int mi) {
while(mi) {
if(mi & 1) a = a * x;
mi >>= 1;
x = x * x;
}
}
signed main() {
// freopen("S.in", "r", stdin);
// freopen("S.out", "w", stdout);
int i, j;
r1(X, K, n, Q);
for(i = 1; i <= K; ++ i) r1(c[i]);
for(i = 1; i <= Q; ++ i) r1(st[i].p, st[i].w);
sort(st + 1, st + Q + 1);
for(tot = i = 0; i < (1 << K); ++ i) if(calc(i)) id[i] = ++ tot;
// printf("tot = %d\n", tot);
for(i = 1; i <= tot; ++ i) tmp.a[i][i] = inf;
for(i = 1; i < (1 << K); ++ i) if(id[i]) {
if(i & 1) {
for(j = 1; j <= K; ++ j) if(!(i & (1 << j)))
tmp.a[id[i]][id[((1 << j) | i) >> 1]] = c[j];
}
else tmp.a[id[i]][id[i >> 1]] = 0;
}
ll sum(0);
int last(1);
for(i = 1; i <= Q; ++ i) {
if(st[i].p > n - X) { sum += st[i].w; continue; }
ksm(F, tmp, st[i].p - last);
last = st[i].p;
for(j = 1; j < (1 << K); j += 2) if(id[j]) {
for(int k = 1; k <= tot; ++ k)
F.a[k][id[j]] += st[i].w;
}
}
ksm(F, tmp, n - X + 1 - last);
printf("%lld\n", F.a[1][1] + sum);
return 0;
}
本文介绍了解决CF917C问题的一种方法,利用矩阵加速运算来优化复杂度。通过对状态压缩和矩阵运算的巧妙应用,文章详细阐述了如何在特定条件下减少计算量,实现了高效求解。
279

被折叠的 条评论
为什么被折叠?



